

Beyond Scaling: A Survey on Data-Efficient Agentic Learning

Yaqing Wang¹, Zhenlin Luo^{1,2}, Peiyao Zhao^{1,3}, Yunfeng Cai¹, Quanming Yao⁴

¹Beijing Institute of Mathematical Sciences and Applications

²Institute of Statistics and Big Data, Renmin University of China

³Yau Mathematical Sciences Center, Tsinghua University

⁴Department of Electronic Engineering, Tsinghua University

{wangyaqing, luozhenlin, zhaopeiyao, caiyunfeng}@bimsa.cn, qyaooaa@tsinghua.edu.cn

Abstract

LLM-based agents are increasingly deployed across web and GUI automation, embodied decision making, and scientific workflows, yet their progress is often constrained by limited data and interaction. High-quality supervision is costly, and real-environment interactions are expensive, risky, and quickly invalidated by environment drift. This survey studies how to obtain and improve LLM-based agents with fewer samples, fewer labels, and fewer/cheaper interactions. We view agentic learning as a closed-loop decision process where experience arises from both external supervision and online interactions, and data efficiency requires maximizing information yield per unit cost. We then introduce a unified agentic learning framework and organize the literature along three complementary dimensions: experience augmentation, agent structural design, and learning paradigms. This perspective connects design choices to where learning signals come from, how they are utilized, and how adaptation is performed under bounded budgets. We summarize representative benchmarks and synthesize key open challenges, aiming to clarify the emerging landscape and support future progress in data-efficient agentic learning.

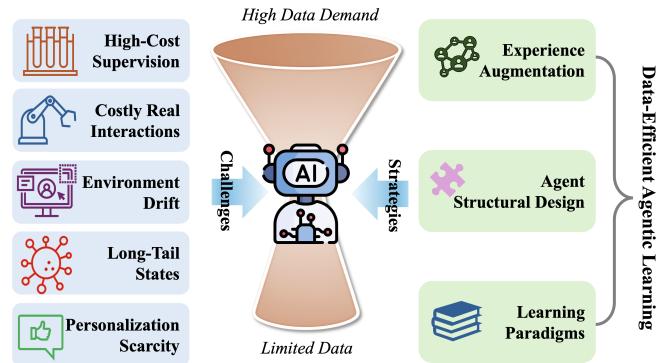


Figure 1: Conceptual overview of data-efficient agentic learning and its three complementary strategies.

In these realistic deployments, the dominant bottleneck is increasingly data efficiency rather than model scaling. Downstream agent tasks are often intrinsically data-scarce: high-quality supervision may be unavailable (e.g., it is unclear how to label every intermediate decision in an interactive trajectory), or feasible but prohibitively expensive (e.g., step-level grounding labels, demonstrations, expert feedback, or verification). Meanwhile, online trial-and-error is not “free data”: it consumes environment steps and tool calls, can require human verification, and may introduce safety or reliability risks, especially in high-stakes scenarios. Compounding the problem, interaction data can become stale under environment or interface drift—a common issue in software automation [Zhou *et al.*, 2024c; Xie *et al.*, 2024]—and similar constraints arise in embodied, scientific, and medical workflows where privacy, expert time, or experimental verification costs dominate [Chen *et al.*, 2024; Rein *et al.*, 2024; Laurent *et al.*, 2024]. As a result, practitioners often have to obtain and improve agents with whatever limited signal is available, making “how to learn/obtain a capable LLM-based agent in a data-efficient way” a first-order question.

Data efficiency has been a central theme in machine learning, spanning few-shot learning [Wang *et al.*, 2020] and sample-efficient reinforcement learning (RL) [Yu, 2018]. Yet agentic learning fundamentally broadens what “data” means and where efficiency comes from. Beyond labeled examples, agents learn from human annotations, trajectories, intermedia-

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

1 Introduction

Large language model (LLM)-based agents are rapidly moving beyond prompt-only prototypes into closed-loop systems that can perceive, reason/plan, and act in dynamic environments. This shift marks a transition from “model-as-a-service” to “model-as-an-agent”: success is no longer determined by one-shot generation quality, but by whether the agent can reliably acquire, verify, and refine behaviors while acting under dynamic feedback and long-horizon goals. Recent progress has enabled such agents to operate across a wide range of practical settings—from web and GUI automation to embodied decision making and scientific or medical workflows—where perception, reasoning, and action execution must be coordinated end-to-end [Zhou *et al.*, 2024c; Xie *et al.*, 2024; Shridhar *et al.*, 2021; Laurent *et al.*, 2024].

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67

68 ate reasoning traces, tool-use patterns, and verification outcomes [Yao *et al.*, 2022; Shinn *et al.*, 2023]. Efficiency is
 69 therefore no longer solely a property of a learning algorithm; it emerges from the joint design of (i) experience and how it
 70 is generated, transformed, or simulated to reduce reliance on
 71 costly supervision, (ii) agent structure—including specialized
 72 perceivers and action executors—that reduces wasted interactions and localizes errors, and (iii) learning paradigms that
 73 maximize information gain from limited samples, labels, and
 74 interactions by governing whether and how model parameters
 75 are updated. Recent theoretical analyses further suggest that
 76 in-context adaptation can be understood as a form of implicit
 77 learning, helping explain strong few-shot generalization be-
 78 haviors in modern LLMs [Wu *et al.*, 2025b].

82 Despite the rapidly growing literature, existing reviews of
 83 LLM-based agents [Wang *et al.*, 2024b; Sang *et al.*, 2025;
 84 Liu *et al.*, 2025a] typically emphasize broad architectural
 85 scope or focus on individual components such as multi-agent
 86 architectures [Wu *et al.*, 2025a; Guo *et al.*, 2024], feedback
 87 mechanisms [Liu *et al.*, 2025b], memory designs [Zhang
 88 *et al.*, 2025b], or planning patterns [Torreno *et al.*, 2017].
 89 They have not explicitly centered bounded supervision and
 90 interaction budgets as the organizing principle that connects
 91 techniques across experience acquisition, agent structure, and
 92 learning dynamics. At the same time, the growing scale and
 93 diversity of recent work make a unified, agent-centric synthesis
 94 along this dimension both timely and valuable.

95 In this survey, we provide a review of data-efficient agentic
 96 learning (Figure 1). Concretely, we make the following
 97 contributions: We introduce a unified agentic learning frame-
 98 work and a data-efficiency criterion grounded in limited sam-
 99 ples, labels, and interactions. We organize the literature into
 100 a taxonomy along three complementary dimensions: (i) ex-
 101 perience augmentation, (ii) agent structural design, and (iii)
 102 learning paradigms, connecting where learning signals origi-
 103 nate, how they are utilized, and how adaptation is performed
 104 under bounded budgets. Finally, we summarize representa-
 105 tive benchmarks across application domains and discuss open
 106 challenges that shape future progress.

107 2 Overview

108 We study how to obtain and improve LLM-based agents in
 109 a data-efficient way. An LLM-based agent can be viewed
 110 as a closed-loop decision-making system that repeatedly per-
 111 ceives the environment, reasons and plans with an LLM, ex-
 112 ecutes actions (often via tools), and receives feedback through
 113 interaction. At time step t , the environment is in state $s_t \in \mathcal{S}$
 114 and the agent follows the interaction loop shown in Figure 2:

$$\begin{aligned} o_t &= P(s_t), \\ (g_t, a_t) &= L_\theta(o_t, m_{t-1}), \\ m_t &= M(m_{t-1}, g_t), \\ a'_t &= E(a_t), \\ s_{t+1} &= T(s_t, a'_t). \end{aligned}$$

115 Here P denotes a perceiver that maps the environment state
 116 to an observation, L_θ is the LLM that produces intermediate
 117 reasoning outputs g_t and selects the next action a_t , M is a

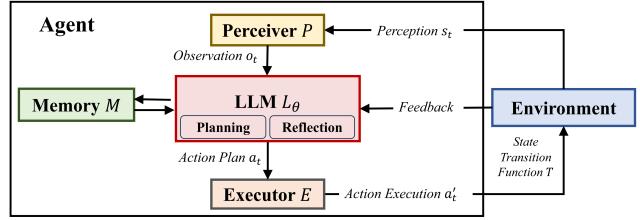


Figure 2: Agentic learning loop with core components.

memory module that maintains and updates the internal state
 m_t , and E is an action executor that converts the selected
 118 action into an executable form. The interaction yields on-
 119 line experience $\mathcal{D}_o = \{(s_t, o_t, a_t, \dots)\}_{t=1}^T$, while the agent
 120 may also leverage external experience \mathcal{D}_e collected outside
 121 its own interaction loop (e.g., demonstrations, labels, pre-
 122 ference feedback, or verified outcomes). We denote the available
 123 experience by $\mathcal{D} = \mathcal{D}_o \cup \mathcal{D}_e$.
 124

125 Then, we define data-efficient agentic learning as follows.

Definition 1 (Data-Efficient Agentic Learning). *Data-
 127 efficient agentic learning studies how to obtain and im-
 128 prove LLM-based agents that operate in interactive decision-
 129 making settings under limited available experience \mathcal{D} .*
 130

131 In this survey, we emphasize three coupled aspects. First,
 132 agentic interaction refers to a closed-loop process in which
 133 an agent repeatedly perceives the environment, reasons and
 134 plans with an LLM, executes actions, and incorporates feed-
 135 back over time. Second, learning signals arise from both
 136 online interactions (trajectories, feedback, verification out-
 137 comes) and external supervision (demonstrations, labels,
 138 preference feedback, curated data). Third, an approach is
 139 data-efficient if its performance gains do not rely on col-
 140 lecting large amounts of new supervision or extensive real-
 141 environment trial-and-error, but instead improve the informa-
 142 tion yield per unit data and interaction.

143 Definition 1 highlights that data-efficiency bottlenecks
 144 stem from both costly supervision in \mathcal{D}_e and costly real-
 145 environment interaction in \mathcal{D}_o . Accordingly, this survey or-
 146 ganizes existing methods along three complementary design
 147 levers that act on different parts of the agentic loop. Expe-
 148 rience augmentation focuses on expanding the effective ex-
 149 perience \mathcal{D} without proportional increases in real interaction
 150 (Section 3.1). Agent structural design reorganizes the inter-
 151 internal modules and execution protocol (e.g., perceiver, memory,
 152 planning, reflection, and action executor) so that interactions
 153 become more directed, verifiable, and reusable, reducing re-
 154 dundant trial-and-error (Section 3.2). Learning paradigms
 155 characterize how agents are adapted from limited data and
 156 interaction (Section 3.3). Section 3 then elaborates this tax-
 157 onomy and reviews representative methods in each category.

158 3 Taxonomy

159 We now elaborate the taxonomy motivated by Definition 1
 160 and Figure 2. The following three subsections review three
 161 complementary aspects of data-efficient agentic learning in-
 162 troduced in Section 2. For each aspect, we summarize its core

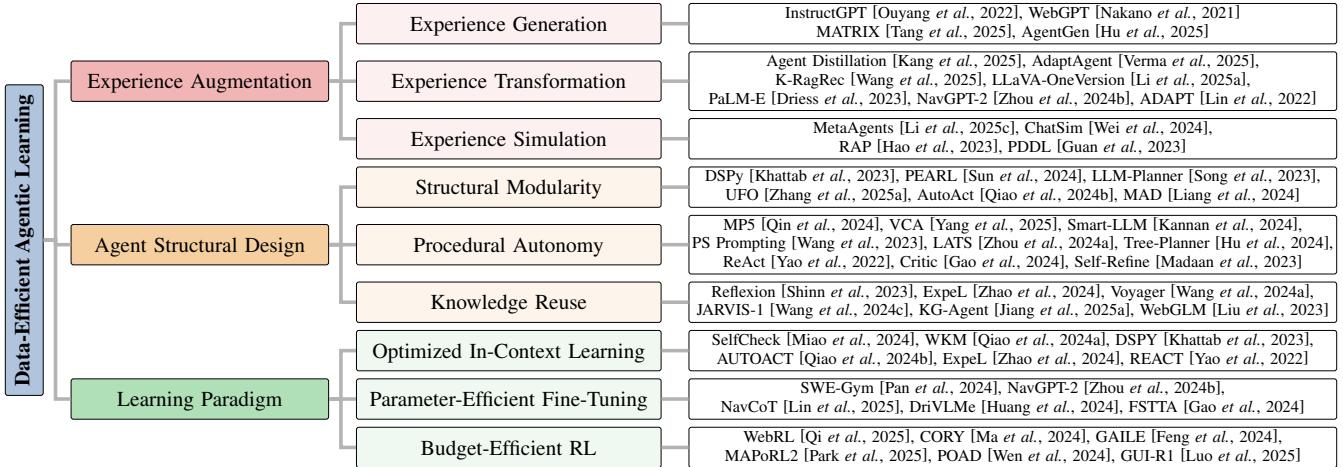


Figure 3: Taxonomy of data-efficient agentic learning.

163 idea, the type of data scarcity it addresses (samples, labels, or
164 interactions), and representative works, noting that practical
165 systems often combine multiple aspects.

166 3.1 Experience Augmentation

167 In data-efficient agentic learning, performance is often con-
168 strained by the availability and quality of external experience
169 rather than model capacity. Real-world trajectories rarely
170 cover long-tail states, human supervision is costly, and on-
171 line interaction incurs substantial time, safety, and resource
172 overhead. Under such constraints, naive trial-and-error yields
173 low information gain and poor generalization.

174 Experience augmentation addresses this bottleneck by ex-
175 panding and strengthening the effective experience pool un-
176 der bounded budgets. Rather than collecting more data, its
177 goal is to increase the density of task-relevant learning sig-
178 nals and reusable behavioral structure per unit of real experi-
179 ence. We organize existing approaches into three categories
180 (Table 1): *experience generation*, *experience transformation*,
181 and *experience simulation*.

Category	Core Idea	Data Type	Representative Works
Experience Generation	Create new high-quality data	S, L, I	InstructGPT [Ouyang et al., 2022]; WebGPT [Nakano et al., 2021]; MATRIX [Tang et al., 2025]; AgentGen [Hu et al., 2025]
Experience Transformation	Increase information density	S, L	Agent Distillation [Kang et al., 2025]; AdaptAgent [Verma et al., 2025]; PaLM-E [Driess et al., 2023]; NavGPT-2 [Zhou et al., 2024b]
Experience Simulation	Shift interaction to cheaper surrogates	S, I	MetaAgents [Li et al., 2025c]; ChatSim [Wei et al., 2024]; RAP [Hao et al., 2023]; PDDL [Guan et al., 2023]

Table 1: Experience augmentation strategies for data-efficient agentic learning. S/L/I denote sample/label/interaction.

182 **Experience Generation.** This category expands the effec-
183 tive experience pool beyond what is directly collected from

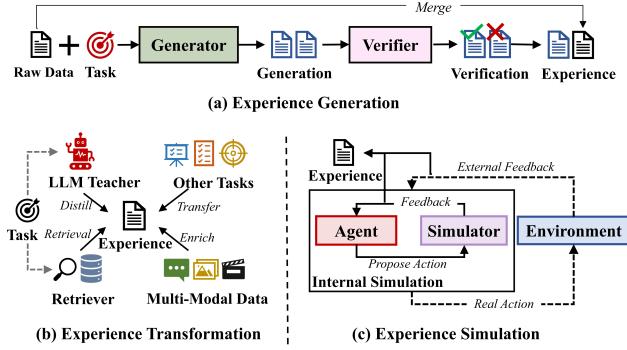


Figure 4: Illustration of experience augmentation strategy for data-efficient agentic learning. (a) Experience generation synthesizes additional training experience to expand coverage under limited interaction budgets. (b) Experience transformation enriches and restructures limited real experience into more reusable training signals. (c) Experience simulation replaces costly real-world interaction with simulated or modeled environments.

184 the real environment, targeting coverage gaps and recur-
185 ring failure modes under limited interaction budgets (Figure
186 4(a)). Instead of unconstrained data synthesis, experi-
187 ence generation focuses on producing high-quality trajec-
188 tories that expose diverse error cases while maintaining re-
189 liable supervision. In LLM-based agents, experience gen-
190 eration often starts from *human-centric* designs, where a
191 small amount of carefully curated demonstrations or prefer-
192 ence feedback is used to concentrate supervision on effec-
193 tive behaviors and reduce exploration waste, as exemplified
194 by InstructGPT [Ouyang et al., 2022], WebGPT [Nakano
195 et al., 2021]. It can further scale through *model-centric*
196 generation, where agents synthesize additional trajectories
197 at low marginal cost and rely on verification or structured
198 feedback to control error propagation; representative exam-
199 ples include MATRIX [Tang et al., 2025], which generates
200 interaction data via structured multi-agent simulation, and
201 AgentGen [Hu et al., 2025], which expands coverage through

202 environment-conditioned trajectory synthesis without additional
 203 real-world interaction. These methods improves data
 204 efficiency by creating additional training signals to expand
 205 coverage under limited supervision.

206 **Experience Transformation.** This category improves data
 207 efficiency by enriching and restructuring limited real trajectories
 208 with complementary information, allowing each experience item to carry stronger and more reusable learning signals
 209 without additional interaction cost (Figure 4(b)). This
 210 is achieved by integrating real experience with external supervision or structure, followed by systematic reprocessing
 211 such as filtering, rewriting, relabeling, or compression. Existing approaches span multiple mechanisms: *knowledge distillation* transfers reasoning traces or interactive trajectories from stronger teachers (e.g., Agent Distillation [Kang *et al.*, 2025]); *experience retrieval* reuses relevant demonstrations or structured knowledge as in-context guidance (e.g., Adapta-Agent [Verma *et al.*, 2025], K-RagRec [Wang *et al.*, 2025]); *cross-task transfer* enables data-scarce tasks to benefit from skills learned in data-rich domains (e.g., PaLM-E [Driess *et al.*, 2023], LLaVA-OneVision [Li *et al.*, 2025a]); and *modality enrichment* aligns multimodal signals to make supervision more explicit and informative (e.g., ADAPT [Lin *et al.*, 2022], NavGPT-2 [Zhou *et al.*, 2024b]). These methods transform existing experience to increase information density and reuse, thereby improving data efficiency.

228 **Experience Simulation.** This category reduces reliance on
 229 expensive real-world interaction by shifting exploration and
 230 failure discovery to cheaper surrogate environments (Figure
 231 4(c)). Instead of real trial-and-error, agents explore within
 232 explicit simulators or learned world models to obtain di-
 233 verse trajectories and feedback at lower cost. The objective
 234 is not perfect realism, but sufficient diversity and struc-
 235 tural fidelity to complement scarce real experience. Systems
 236 such as MetaAgents [Li *et al.*, 2025c] and ChatSim [Wei
 237 *et al.*, 2024] demonstrate the utility of controllable simu-
 238 lated environments for generating targeted and rare interac-
 239 tion scenarios, while world-model-based approaches such as
 240 RAP [Hao *et al.*, 2023] and symbolic planning frameworks
 241 like PDDL [Guan *et al.*, 2023] enable agents to simulate out-
 242 comes and validate plans without repeated external execution.
 243 In sum, they improves data efficiency by substituting costly
 244 real-world interaction with lower-cost interaction sources.

245 3.2 Agent Structural Design

246 Agent structural design studies how to reorganize an LLM-
 247 based agent’s internal structure and execution protocol while
 248 holding data sources fixed, so as to increase the utility of each
 249 supervision signal or interaction. Rather than acquiring new
 250 experience, it focuses on how the agent perceives, reasons,
 251 plans, and executes actions through structured internal mod-
 252 ules. The goal is to reduce unnecessary trial-and-error and
 253 environment steps by localizing supervision to the most in-
 254 formative stages. This often trades additional inference-time
 255 computation for fewer costly external interactions. From a
 256 data-efficiency perspective, structural design improves per-
 257 formance by shrinking the decision space, preventing costly
 258 error propagation, and enabling reuse of plans, skills, and

259 memories. As a result, performance gains increasingly arise
 260 from structured internal self-improvement rather than addi-
 261 tional external supervision or interaction. We organize exist-
 262 ing designs into three categories (Table 2): *structural mod-
 263 ularity*, *procedural autonomy*, and *knowledge reuse*, which
 264 respectively emphasize modular composition, controlled de-
 265 cision procedures, and reuse of prior knowledge to avoid re-
 266 dundant exploration.

Category	Core Idea	Core Modules	Representative Works
Structural Modularity	Decompose decision structure	Planner; Action Executor; Critic	DSPy [Khattab <i>et al.</i> , 2023]; PEARL [Sun <i>et al.</i> , 2024]; LLM-Planner [Song <i>et al.</i> , 2023]; UFO [Zhang <i>et al.</i> , 2025a]; AutoAct [Qiao <i>et al.</i> , 2024b]; MAD [Liang <i>et al.</i> , 2024]
Procedural Autonomy	Constrain execution procedure	Perceiver; Planner; Controller; Verifier	MP5 [Qin <i>et al.</i> , 2024]; VCA [Yang <i>et al.</i> , 2025]; Plan-and-Solve [Wang <i>et al.</i> , 2023]; LATS [Zhou <i>et al.</i> , 2024a]; ReAct [Yao <i>et al.</i> , 2022]; Self-Refine [Madaan <i>et al.</i> , 2023]
Knowledge Reuse	Reuse prior experience	Memory; Skill library; External KB	Reflexion [Shinn <i>et al.</i> , 2023]; ExpeL [Zhao <i>et al.</i> , 2024]; Voyager [Wang <i>et al.</i> , 2024a]; JARVIS [Wang <i>et al.</i> , 2024c]; WebGLM [Liu <i>et al.</i> , 2023]; KG-Agent [Jiang <i>et al.</i> , 2025a]

267 Table 2: Agent structural design for data-efficient agentic learning.

268 **Structural Modularity.** This line of work introduces ex-
 269 plicit boundaries and interfaces into an agent’s internal work-
 270 flow, transforming an entangled end-to-end reasoning-action
 271 process into coordinated components. From a data-efficiency
 272 perspective, modularity reduces global trial-and-error by lo-
 273 calizing failures, enabling targeted supervision, and promot-
 274 ing reuse of intermediate artifacts. **Function decoupling**,
 275 which factorizes monolithic reasoning into planning, execu-
 276 tion, and verification modules, allows errors to be corrected
 277 locally without restarting the entire decision loop, as exem-
 278 plified by DSPy [Khattab *et al.*, 2023] and PEARL [Sun *et
 279 al.*, 2024]; **hierarchical organization**, which separates high-
 280 level subgoal planning from low-level execution, compresses
 281 long-horizon decision-making via reusable action executors,
 282 as in LLM-Planner [Song *et al.*, 2023] and UFO [Zhang *et al.*,
 283 2025a]; and **role specialization** (Figure 5 (a)), where differ-
 284 ent agents or components take stable functional roles and ex-
 285 change structured feedback, internalizes verification and co-
 286 ordination within the system rather than relying on external
 287 supervision, as demonstrated by AutoAct [Qiao *et al.*, 2024b]
 288 and MAD [Liang *et al.*, 2024]. These design strategies show
 289 that modular composition can substantially reduce external
 290 interaction cost and improve sample reuse under fixed data
 291 budgets.

292 **Procedural Autonomy.** This line of work constrains agent
 293 behavior through explicit, reusable decision procedures, re-
 294 placing unconstrained autoregressive generation with con-
 295 trolled iterative workflows. By deciding what to observe, how
 296 to decompose goals, when to act, and when to verify, pro-
 297 cedural designs reduce wasted exploration and prevent cas-
 298 cading errors before costly external actions. **Active percep-
 299 tion**, which treats perception as a decision policy over what

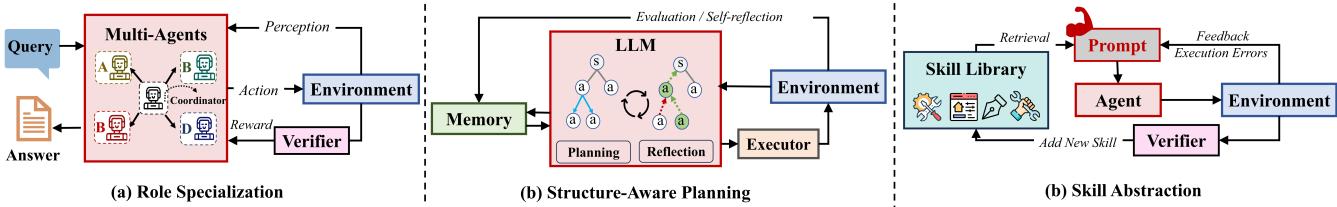


Figure 5: Illustrative examples of agent structural design for data-efficient agentic learning. (a) Role specialization, a representative instantiation of *structural modularity*, where the agent is decomposed into coordinated sub-roles with verifier feedback. (b) Structure-aware planning, a representative instantiation of *procedural autonomy*, where explicit state–action structure with memory, planning, and reflection guides decisions to reduce trial-and-error. (c) Skill abstraction, a representative instantiation of *knowledge reuse*, where the agent retrieves, composes, and verifies reusable skills from a library to avoid repeated low-level interactions.

and when to observe, selectively acquires task-relevant information under limited perception budgets, as in MP5 [Qin *et al.*, 2024] and VCA [Yang *et al.*, 2025]; **task decomposition and structure-aware planning** (Figure 5 (b)), which break long-horizon goals into verifiable substeps and restrict the search space via explicit plans or trees, reduce blind trial-and-error by enabling backtracking and reuse of partial solutions, as in Plan-and-Solve Prompting [Wang *et al.*, 2023], Smart-LLM [Kannan *et al.*, 2024], LATS [Zhou *et al.*, 2024a], and Tree-Planner [Hu *et al.*, 2024]; and **execution control and self-verification**, which gate action execution through intermediate checks and critique, prevent error propagation before costly external actions, as in ReAct [Yao *et al.*, 2022], Self-Refine [Madaan *et al.*, 2023], and Critic [Gou *et al.*, 2024]; Collectively, these procedural constraints shift performance gains toward structured internal self-improvement rather than additional external supervision or interaction.

3.3 Learning Paradigm

When experience augmentation and structural design alone are insufficient, learning becomes unavoidable for improving agent performance. However, naive learning in agentic settings often incurs prohibitive supervision and interaction costs, violating the data-efficiency objective. We therefore regard a learning paradigm as data-efficient only when its gains do not rely on large-scale new supervision or extensive real-environment trial-and-error per task, but instead operate under strictly bounded data and interaction budgets.

Under this criterion, we organize existing approaches into three paradigms (Table 3): *optimized in-context learning (ICL)*, which enables inference-time adaptation without parameter updates; *parameter-efficient fine-tuning (PEFT)*, which achieves persistent adaptation via lightweight parameter updates; and *budget-efficient reinforcement learning (RL)*, which improves policies under constrained interaction and credit-assignment budgets. Together, they span a spectrum from transient to persistent adaptation, capturing key trade-offs among learning permanence, data efficiency, and interaction cost.

Paradigm	Core Idea	Budget Type	Representative Works
Optimized ICL	Adapt without parameter updates	Inference-only	ReAct [Yao <i>et al.</i> , 2022]; SelfCheck [Miao <i>et al.</i> , 2024]; DSPy [Khattab <i>et al.</i> , 2023]; ExpeL [Zhao <i>et al.</i> , 2024]; WKM [Qiao <i>et al.</i> , 2024a]; AutoAct [Qiao <i>et al.</i> , 2024b]
PEFT	Partial parameter adaptation	Limited training data	SWE-Gym [Pan <i>et al.</i> , 2024]; NavGPT-2 [Zhou <i>et al.</i> , 2024b]; NavCoT [Lin <i>et al.</i> , 2025]; DriVLM [Huang <i>et al.</i> , 2024]; FSTTA [Gao <i>et al.</i> , 2024]
Budget-Efficient RL	Policy learning via a few interaction	Budgeted interaction	WebRL [Qi <i>et al.</i> , 2025]; CORY [Ma <i>et al.</i> , 2024]; GAIL [Feng <i>et al.</i> , 2024]; MAPoRL2 [Park <i>et al.</i> , 2025]; POAD [Wen <i>et al.</i> , 2024]; GUI-R1 [Luo <i>et al.</i> , 2025]

Table 3: Learning paradigms for data-efficient agentic learning.

Optimized In-Context Learning (ICL). This paradigm enables inference-time adaptation by reusing and restructuring contextual information, eliminating the need for parameter updates (Figure 6(a)). Early agentic prompting frameworks such as ReAct [Yao *et al.*, 2022] show that interleaving reasoning, action, and observation within context allows



Figure 6: Illustration of learning paradigms for data-efficient agentic learning. (a) Optimized ICL adapts behavior at inference time without parameter updates. (b) PEFT enables persistent adaptation with limited demonstrations via lightweight updates. (c) Budget-efficient RL improves policies under constrained interaction budgets by enhancing learning signals rather than scaling rollouts.

agents to incorporate environment feedback without learning. Subsequent work improves data efficiency by optimizing context quality rather than quantity: SelfCheck [Miao *et al.*, 2024] and DSPy [Khattab *et al.*, 2023] introduce verification and compilation mechanisms to refine prompts based on feedback signals, while knowledge-based approaches (e.g., ExpeL [Zhao *et al.*, 2024], WKM [Qiao *et al.*, 2024a]) reuse distilled trial-and-error experience and inject task knowledge as in-context guidance to mitigate blind exploration and hallucinated actions. AutoAct [Qiao *et al.*, 2024b] further demonstrates that agents can bootstrap high-quality contextual trajectories through self-instruction and structured reflection under minimal human supervision. Overall, optimized in-context learning enables efficient inference-time adaptation of LLM-based agents without parameter updates; recent theoretical analyses further suggest that such behavior can be understood as implicit learning, exhibiting strong few-shot generalization [Wu *et al.*, 2025b].

385 **Parameter-Efficient Fine-Tuning (PEFT).** This paradigm
 386 enables persistent task adaptation under limited supervision
 387 by updating only a small subset of parameters, reducing data
 388 demand, optimization cost, and the risk of catastrophic for-
 389 getting compared with full fine-tuning (Figure 6(b)). In agent-
 390 ic systems, PEFT allows specialization from a small number
 391 of demonstrations or interaction traces while preserving the
 392 generality of large pretrained models. Across embodied navi-
 393 gation, autonomous driving, and software agents, works such
 394 as NavGPT-2 [Zhou *et al.*, 2024bl], NavCoT [Lin *et al.*, 2025],
 395 DriVLMe [Huang *et al.*, 2024], and SWE-Gym [Pan *et al.*,
 396 2024] demonstrate that adopting lightweight adapters or pro-
 397 jections can achieve strong performance with orders of mag-
 398 nitude fewer labeled trajectories. Recent extensions further
 399 show that PEFT can be applied online or at test time [Gao *et*
 400 *al.*, 2024], enabling agents to adapt under strict data budgets
 401 without large-scale retraining.

402 Budget-Efficient Reinforcement Learning (RL). This
 403 paradigm improves agent policies under strictly limited in-
 404 teraction budgets, expensive environment access, and sparse
 405 or delayed feedback, where conventional RL that scales roll-
 406 outs becomes impractical (Figure 6(c)). Rather than increas-
 407 ing interactions, recent approaches enhance data efficiency
 408 by restructuring experience, shaping rewards, and improving
 409 credit assignment. For example, WebRL [Qi *et al.*, 2025]
 410 and MAPoRL2 [Park *et al.*, 2025] demonstrate that self-
 411 evolving curriculum reuse, verifier-based rewards, and col-
 412 laborative training can yield substantial gains with far fewer
 413 rollouts. Fine-grained credit assignment methods such as

POAD [Wen *et al.*, 2024] further accelerate learning by yielding finer-grained credit assignment without additional interactions. These strategies have proven particularly effective for GUI agents [Luo *et al.*, 2025], highlighting that budget-efficient RL is less about scaling interaction and more about extracting maximal learning signal from minimal experience.

4 Applications and Benchmarks

We highlight five representative application domains—Web, GUI, Embodied AI, Medical, and Science—that capture the primary real-world settings in which data-efficient agentic learning is most critical. These domains span common agent interaction modalities, from text-based and vision-language interfaces to long-horizon decision making in physical and scientific workflows. Across all five domains, agents face similar structural constraints: effective interaction trajectories are costly to obtain, fine-grained grounding or expert supervision is expensive, environments and user interfaces evolve over time, and safety, privacy, or experimental considerations restrict large-scale trial-and-error. As a result, agent performance in these settings depends not only on task competence, but on how efficiently learning signals are acquired, reused, and transferred under limited supervision and interaction.

Table 4 lists a small set of widely used benchmarks selected to provide empirical grounding for these challenges. Rather than offering an exhaustive benchmark survey, we focus on benchmarks that (i) adopt relatively stable evaluation protocols, (ii) instantiate explicit perception–decision–action loops, and (iii) expose dominant sources of data scarcity, including interaction cost, labeling or expert supervision cost, environment or interface drift, and regulatory or safety constraints. These benchmarks therefore serve as representative testbeds for studying how different data-efficient mechanisms—experience augmentation, agent structural design, and learning paradigms—translate into practical gains across application domains.

5 Open Challenges

Data-efficient agentic learning departs from classical notions of sample efficiency because agent data is interactive, sequential, and heterogeneous across tasks, environments, and users. Each step can generate not only observations and rewards, but also reasoning traces, tool-use patterns, and verification signals that affect future decisions. When interaction, supervision, verification, and personalization all carry real cost, several challenges become central to making data-efficient agents practical and reliable.

Benchmark	Modality	Task	Link	Year
Web (High interaction cost and rapid environment drift.)				
WebArena [Zhou <i>et al.</i> , 2024c]	L	Web Navigation	link	2023
Mind2Web [Deng <i>et al.</i> , 2023]	V-L	Web Navigation	link	2023
WebVoyager [He <i>et al.</i> , 2024]	V-L	Web Navigation	link	2024
GUI (High annotation cost and UI drift across versions/devices.)				
OSWorld [Xie <i>et al.</i> , 2024]	V-L	Desktop Automation	link	2024
AndroidWorld [Rawles <i>et al.</i> , 2025]	V-L	Mobile App Automation	link	2024
ScreenSpot [Li <i>et al.</i> , 2025b]	V-L	GUI Grounding	link	2025
Embodied AI (Costly and safety-constrained real-world interaction.)				
Franka-Kitchen [Gupta <i>et al.</i> , 2020]	3D	Manipulation	link	2019
ALFWORLD [Shridhar <i>et al.</i> , 2021]	L	Embodied Task Execution	link	2021
Meta-World [McLean <i>et al.</i> , 2025]	3D	Multi-task Manipulation	link	2025
Medical (Privacy-restricted data and costly expert supervision.)				
ClinicalBench [Chen <i>et al.</i> , 2024]	L	Clinical Prediction	link	2024
MedRAX [Fallahpour <i>et al.</i> , 2025]	V-L	Clinical Diagnosis	link	2025
MedAgentBench [Jiang <i>et al.</i> , 2025b]	L	Clinical Decision Making	link	2025
Science (Expert-labeled data and expensive experiments.)				
GPQA [Rein <i>et al.</i> , 2024]	L	Scientific Reasoning	link	2024
LAB-Bench [Laurent <i>et al.</i> , 2024]	V-L	Biology Research	link	2024
DiscoveryWorld [Jansen <i>et al.</i> , 2024]	V-L	Scientific Discovery	link	2024

Table 4: Representative benchmarks for data-efficient agentic learning across application domains. L denotes language-only (text), V-L denotes vision–language, and 3D denotes embodied observations (3D state/environment).

459 **Long-Horizon Learning.** Many agentic tasks require long-
 460 horizon decision making, where errors compound and the
 461 burden of verification, credit assignment, and exploration
 462 escalates quickly [Lin *et al.*, 2025]. Although PEFT and
 463 budget-efficient RL reduce parameter-update cost, long-
 464 horizon settings often still incur substantial interaction and
 465 supervision overhead. A key direction is to make horizon a
 466 first-class factor in agent design and learning: agents should
 467 reason with checkpoints, reuse intermediate artifacts, and al-
 468 locate verification strategically, rather than relying on naive
 469 rollout scaling.

470 **Generalization and Drift.** General-purpose agents must
 471 transfer across tasks, tools, environments, and deployment
 472 conditions while relying on limited data and interactions.
 473 Since exhaustive coverage is infeasible, robust generaliza-
 474 tion hinges on learning reusable abstractions of reasoning,
 475 planning, and interaction rather than fitting individual tra-
 476 jectories [Zhao *et al.*, 2024]. This brings forward practical
 477 questions about what should be abstracted (e.g., decomposi-
 478 tion patterns and tool-use strategies), how sparse interactions
 479 should trigger adaptation, and how to remain stable under dis-
 480 tribution shift and environment/UI drift.

481 **Personalization and User-Centric Learning.** Many real-
 482 world agents operate in personalized settings, where behav-
 483 ior must adapt to individual users, preferences, and con-
 484 straints [Nie *et al.*, 2025]. Personalization is intrinsically
 485 data-scarce: each user induces a distinct interaction distribu-
 486 tion, and feedback is often implicit, noisy, or delayed. Core
 487 challenges include leveraging population-level structure to re-
 488 duce per-user data needs, maintaining long-term user models
 489 under privacy constraints, and ensuring personalization does
 490 not erode generalization or safety.

System-Level Efficiency across Deployments. Most
 491 agents are still improved in isolation, causing interaction and
 492 supervision costs to scale linearly with the number of de-
 493 ployment instances [Ma *et al.*, 2024]. A promising direction
 494 is to treat data efficiency as a system objective: transform
 495 trajectories, skills, and verification outcomes into structured
 496 representations that can be selectively shared and reused
 497 across instances. Achieving this requires principled selection
 498 and aggregation, safeguards against error amplification, and
 499 evaluation protocols that measure marginal utility of shared
 500 experience rather than isolated task performance.

Self-Evolving Agents. A long-term goal is open-ended
 502 agents that continually improve through interaction with en-
 503 vironments, humans, and data [Yao *et al.*, 2022], blurring the
 504 boundary between training-time and test-time learning. In
 505 deployment, however, unconstrained self-evolution is unre-
 506 alistic because interaction, verification, and computation are
 507 budgeted. The challenge is to make self-evolution deliber-
 508 ate and economical: agents should decide when to explore,
 509 when to verify, and what to retain or reuse so improvement is
 510 sustainable and does not regress under drift.

Interaction-Centric Evaluation. Most benchmarks em-
 512 phasize final task success and implicitly treat interaction as
 513 free, which hides inefficiencies in learning and adaptation.
 514 More informative evaluation should report not only success
 515 rates, but also interaction steps, tool calls, verification fre-
 516 quency, supervision cost, and performance gain per unit inter-
 517 action [Shinn *et al.*, 2023]. Such protocols would enable prin-
 518 cipled comparison of methods that trade computation, veri-
 519 fication, and interaction differently.

High-Stakes, Data-Scarce Domains. Interaction data is
 521 costly, sparse, or high-risk rather than simply “limited” in
 522 many applications. This is evident in embodied decision mak-
 523 ing [Qin *et al.*, 2024], scientific discovery [Swanson *et al.*,
 524 2025], and medical decision support, where unsafe or exces-
 525 sive trial-and-error is unacceptable. These domains call for
 526 data-efficient agents that integrate domain priors, rely on veri-
 527 fiable signals, and allocate scarce human supervision where
 528 it has the highest leverage.

6 Conclusion

530 This survey presented an agent-centric view of data-efficient
 531 agentic learning, focusing on how to obtain and improve
 532 LLM-based agents when supervision and real-world inter-
 533 actions are scarce, expensive, or risky. We framed the
 534 design space along three complementary dimensions: ex-
 535 perience augmentation, agent structural design, and learn-
 536 ing paradigms, which together aim to maximize information
 537 yield per unit cost, often trading additional inference-time
 538 computation and verification for fewer external interactions
 539 and less human supervision. We also summarized represen-
 540 tative benchmarks across Web, GUI, embodied, medical, and
 541 scientific domains, and discussed open challenges in long-
 542 horizon learning under tight budgets, generalization beyond
 543 data coverage, user-centric personalization under sparse feed-
 544 back, and interaction-centric evaluation. We hope this survey
 545 helps clarify the emerging landscape and supports the devel-
 546 opment of robust and deployable data-efficient agents.

References

[Chen *et al.*, 2024] Canyu Chen, Jian Yu, Shan Chen, et al. Clinicalbench: Can LLMs beat traditional ML models in clinical prediction? In *AAAI Workshop*, 2024.

[Deng *et al.*, 2023] Xiang Deng, Yu Gu, Boyuan Zheng, et al. Mind2Web: Towards a generalist agent for the web. In *NeurIPS*, 2023.

[Driess *et al.*, 2023] Danny Driess, Fei Xia, Mehdi SM Sajjadi, et al. PaLM-E: An embodied multimodal language model. In *ICML*, 2023.

[Fallahpour *et al.*, 2025] Adibvafa Fallahpour, Jun Ma, Alif Mumim, et al. MedRAX: Medical reasoning agent for chest X-ray. In *ICML*, 2025.

[Feng *et al.*, 2024] Peiyuan Feng, Yichen He, Guanhua Huang, et al. AGILE: A novel reinforcement learning framework of LLM agents. In *NeurIPS*, 2024.

[Gao *et al.*, 2024] Junyu Gao, Xuan Yao, and Changsheng Xu. Fast-slow test-time adaptation for online vision-and-language navigation. In *ICML*, 2024.

[Gou *et al.*, 2024] Zhibin Gou, Zhihong Shao, Yeyun Gong, et al. CRITIC: Large language models can self-correct with tool-interactive critiquing. In *ICLR*, 2024.

[Guan *et al.*, 2023] Lin Guan, Karthik Valmeekam, Sarah Sreedharan, et al. Leveraging pre-trained large language models to construct and utilize world models for model-based task planning. In *NeurIPS*, 2023.

[Guo *et al.*, 2024] Taicheng Guo, Xiuying Chen, Yaqi Wang, et al. Large language model based multi-agents: A survey of progress and challenges. In *IJCAI*, 2024.

[Gupta *et al.*, 2020] Abhishek Gupta, Vikash Kumar, Corey Lynch, et al. Relay policy learning: Solving long-Horizon tasks via imitation and reinforcement learning. In *CoRL*, 2020.

[Hao *et al.*, 2023] Shibo Hao, Yi Gu, Haodi Ma, et al. Reasoning with language model is planning with world model. In *EMNLP*, 2023.

[He *et al.*, 2024] Hongliang He, Wenlin Yao, Kaixin Ma, et al. WebVoyager: Building an end-to-end web agent with large multimodal models. In *ACL*, 2024.

[Hu *et al.*, 2024] Mengkang Hu, Yao Mu, Xinmiao Yu, et al. Tree-Planner: Efficient close-loop task planning with large language models. In *ICLR*, 2024.

[Hu *et al.*, 2025] Mengkang Hu, Pu Zhao, Can Xu, et al. AgentGen: Enhancing planning abilities for large language model based agent via environment and task generation. In *KDD*, 2025.

[Huang *et al.*, 2024] Yidong Huang, Jacob Sansom, Ziqiao Ma, et al. DriVLM: Enhancing LLM-based autonomous driving agents with embodied and social experiences. In *IROS*, 2024.

[Jansen *et al.*, 2024] Peter Jansen, Marc-Alexandre Côté, Tushar Khot, et al. DiscoveryWorld: A virtual environment for developing and evaluating automated scientific discovery agents. In *NeurIPS*, 2024.

[Jiang *et al.*, 2025a] Jinhao Jiang, Kun Zhou, Wayne Xin Zhao, et al. KG-Agent: An efficient autonomous agent framework for complex reasoning over knowledge graph. In *ACL*, 2025.

[Jiang *et al.*, 2025b] Yixing Jiang, Kameron C Black, Gloria Geng, et al. MedAgentBench: A virtual EHR environment to benchmark medical LLM agents. *NEJM*, 2025.

[Kang *et al.*, 2025] Minki Kang, Jongwon Jeong, Seanie Lee, et al. Distilling LLM agent into small models with retrieval and code tools. In *NeurIPS*, 2025.

[Kannan *et al.*, 2024] Shyam Sundar Kannan, Vishnunandan LN Venkatesh, and Byung-Cheol Min. Smart-LLM: Smart multi-agent robot task planning using large language models. In *IROS*, 2024.

[Khattab *et al.*, 2023] Omar Khattab, Arnav Singhvi, Paridhi Mshwari, et al. DSPy: Compiling declarative language model calls into self-improving pipelines. In *NeurIPS*, 2023.

[Laurent *et al.*, 2024] Jon M Laurent, Joseph D Janizek, Michael Ruzo, et al. LAB-Bench: Measuring capabilities of language models for biology research. *arXiv preprint arXiv:2407.10362*, 2024.

[Li *et al.*, 2025a] Bo Li, Yuanhan Zhang, Dong Guo, et al. LLaVA-OneVision: Easy visual task transfer. *TMLR*, 2025.

[Li *et al.*, 2025b] Kaixin Li, Ziyang Meng, Hongzhan Lin, Ziyang Luo, et al. ScreenSpot-Pro: GUI grounding for professional high-resolution computer use. In *MM*, 2025.

[Li *et al.*, 2025c] Yuan Li, Lichao Sun, and Yixuan Zhang. MetaAgents: Large language model based agents for decision-making on teaming. *HCI*, 2025.

[Liang *et al.*, 2024] Tian Liang, Zhiwei He, Wenxiang Jiao, et al. Encouraging divergent thinking in large language models through multi-agent debate. In *EMNLP*, 2024.

[Lin *et al.*, 2022] Bingqian Lin, Yi Zhu, Zicong Chen, et al. ADAPT: Vision-language navigation with modality-aligned action prompts. In *CVPR*, 2022.

[Lin *et al.*, 2025] Bingqian Lin, Yunshuang Nie, Ziming Wei, et al. NavCoT: Boosting LLM-based vision-and-language navigation via learning disentangled reasoning. *TPAMI*, 2025.

[Liu *et al.*, 2023] Xiao Liu, Hanyu Lai, Hao Yu, et al. WebGLM: Towards an efficient web-enhanced question answering system with human preferences. In *KDD*, 2023.

[Liu *et al.*, 2025a] Bang Liu, Xinfeng Li, Jiayi Zhang, et al. Advances and challenges in foundation agents: From brain-inspired intelligence to evolutionary, collaborative, and safe systems. *arXiv preprint arXiv:2504.01990*, 2025.

[Liu *et al.*, 2025b] Zhipeng Liu, Xuefeng Bai, Kehai Chen, et al. A survey on the feedback mechanism of LLM-based AI agents. In *IJCAI*, 2025.

[Luo *et al.*, 2025] Run Luo, Lu Wang, Wanwei He, et al. GUI-R1: A generalist R1-style vision-language action model for GUI agents. *arXiv preprint arXiv:2504.10458*, 2025.

[Ma *et al.*, 2024] Hao Ma, Tianyi Hu, Zhiqiang Pu, et al. Coevolving with the other you: Fine-tuning LLM with sequential cooperative multi-agent reinforcement learning. In *NeurIPS*, 2024.

[Madaan *et al.*, 2023] Aman Madaan, Niket Tandon, Prakhar Gupta, et al. Self-Refine: Iterative refinement with self-feedback. In *NeurIPS*, 2023.

[McLean *et al.*, 2025] Reginald McLean, Evangelos Chatzaroulas, Luc McCutcheon, et al. Meta-World+: An improved, standardized, RL benchmark. In *NeurIPS*, 2025.

[Miao *et al.*, 2024] Ning Miao, Yee Whye Teh, and Tom Rainforth. SelfCheck: Using LLMs to zero-shot check their own step-by-step reasoning. In *ICLR*, 2024.

[Nakano *et al.*, 2021] Reiichiro Nakano, Jacob Hilton, Suchir Balaji, et al. WebGPT: Browser-assisted question-answering with human feedback. *arXiv preprint arXiv:2112.09332*, 2021.

664 [Nie *et al.*, 2025] Hongyi Nie, Yaqing Wang, Mingyang Zhou, et al.
665 Adaptive preference arithmetic: Modeling dynamic preference
666 strengths for LLM agent personalization. In *NeurIPS*, 2025.

667 [Ouyang *et al.*, 2022] Long Ouyang, Jeffrey Wu, Xu Jiang, et al.
668 Training language models to follow instructions with human
669 feedback. In *NeurIPS*, 2022.

670 [Pan *et al.*, 2024] Jiayi Pan, Xingyao Wang, Graham Neubig, et al.
671 Training software engineering agents and verifiers with SWE-
672 Gym. In *ICML*, 2024.

673 [Park *et al.*, 2025] Chanwoo Park, Seungju Han, Xingzhi Guo,
674 et al. MAPoRL: Multi-agent post-co-training for collaborative
675 large language models with reinforcement learning. In *ACL*,
676 2025.

677 [Qi *et al.*, 2025] Zehan Qi, Xiao Liu, Iat Long Jong, et al. WebRL:
678 Training LLM web agents via self-evolving online curriculum
679 reinforcement learning. In *ICLR*, 2025.

680 [Qiao *et al.*, 2024a] Shuofei Qiao, Runnan Fang, Ningyu Zhang,
681 et al. Agent planning with world knowledge model. In *NeurIPS*,
682 2024.

683 [Qiao *et al.*, 2024b] Shuofei Qiao, Ningyu Zhang, Runnan Fang,
684 et al. AutoAct: Automatic agent learning from scratch for QA
685 via self-planning. In *ACL*, 2024.

686 [Qin *et al.*, 2024] Yiran Qin, Enshen Zhou, Qichang Liu, et al.
687 Mp5: A multi-modal open-ended embodied system in minecraft
688 via active perception. In *CVPR*, 2024.

689 [Rawles *et al.*, 2025] Christopher Rawles, Sarah Clinckemaillie,
690 Yifan Chang, et al. AndroidWorld: A dynamic benchmarking
691 environment for autonomous agents. In *ICLR*, 2025.

692 [Rein *et al.*, 2024] David Rein, Betty Li Hou, Asa Cooper Stick-
693 land, et al. GPQA: A graduate-level Google-proof Q&A bench-
694 mark. In *COLM*, 2024.

695 [Sang *et al.*, 2025] Jitao Sang, Jinlin Xiao, Jiarun Han, et al.
696 Beyond pipelines: A survey of the paradigm shift toward model-
697 native agentic AI. *J. ACM*, 2025.

698 [Shinn *et al.*, 2023] Noah Shinn, Federico Cassano, Ashwin
699 Gopinath, et al. Reflexion: Language agents with verbal rein-
700 forcement learning. In *NeurIPS*, 2023.

701 [Shridhar *et al.*, 2021] Mohit Shridhar, Xingdi Yuan, Marc-
702 Alexandre Côté, et al. ALFWorld: Aligning text and embodied
703 environments for interactive learning. In *ICLR*, 2021.

704 [Song *et al.*, 2023] Chan Hee Song, Jiaman Wu, Clayton Washing-
705 ton, et al. LLM-Planner: Few-shot grounded planning for em-
706 bodied agents with large language models. In *ICCV*, 2023.

707 [Sun *et al.*, 2024] Simeng Sun, Yang Liu, Shuohang Wang, et al.
708 PEARL: Prompting large language models to plan and execute
709 actions over long documents. In *EACL*, 2024.

710 [Swanson *et al.*, 2025] Kyle Swanson, Wesley Wu, Nash L Bu-
711 laong, et al. The virtual lab of AI agents designs new SARS-
712 CoV-2 nanobodies. *Nature*, 646(8085):716–723, 2025.

713 [Tang *et al.*, 2025] Shuo Tang, Xianghe Pang, Zexi Liu, et al.
714 Synthesizing post-training data for LLMs through multi-agent simu-
715 lation. In *ACL*, 2025.

716 [Torreno *et al.*, 2017] Alejandro Torreno, Eva Onaindia, et al.
717 Cooperative multi-agent planning: A survey. *CSUR*, 2017.

718 [Verma *et al.*, 2025] Gaurav Verma, Rachneet Kaur, Nishan Sris-
719 hankar, et al. AdaptAgent: Adapting multimodal web agents with
720 few-shot learning from human demonstrations. In *ACL*, 2025.

721 [Wang *et al.*, 2020] Yaqing Wang, Quanming Yao, James T Kwok,
722 et al. Generalizing from a few examples: A survey on few-shot
723 learning. *CSUR*, 53(3):1–34, 2020.

724 [Wang *et al.*, 2023] Lei Wang, Wanyu Xu, Yihuai Lan, et al. Plan-
725 and-Solve Prompting: Improving zero-shot chain-of-thought rea-
726 soning by large language models. In *ACL*, 2023.

727 [Wang *et al.*, 2024a] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, et al.
728 Voyager: An open-ended embodied agent with large language
729 models. *TMLR*, 2024.

730 [Wang *et al.*, 2024b] Lei Wang, Chen Ma, Xueyang Feng, et al. A
731 survey on large language model based autonomous agents. *Front.*
732 *Comput. Sci.*, 18(6):186345, 2024.

733 [Wang *et al.*, 2024c] Zihao Wang, Shaofei Cai, Anji Liu, et al.
734 JARVIS-1: Open-world multi-task agents with memory-
735 augmented multimodal language models. *TPAMI*, 2024.

736 [Wang *et al.*, 2025] Shijie Wang, Wenqi Fan, Yue Feng, et al.
737 Knowledge graph retrieval-augmented generation for LLM-
738 based recommendation. In *ACL*, 2025.

739 [Wei *et al.*, 2024] Yuxi Wei, Zi Wang, Yifan Lu, et al. Editable
740 scene simulation for autonomous driving via collaborative LLM-
741 agents. In *CVPR*, 2024.

742 [Wen *et al.*, 2024] Muning Wen, Ziyu Wan, Jun Wang, et al. Rein-
743 forcing LLM agents via policy optimization with action decom-
744 position. In *NeurIPS*, 2024.

745 [Wu *et al.*, 2025a] Di Wu, Xian Wei, Guang Chen, et al. Generative
746 multi-agent collaboration in embodied AI: A systematic review.
747 In *IJCAI*, 2025.

748 [Wu *et al.*, 2025b] Shiguang Wu, Yaqing Wang, and Quanming
749 Yao. Why in-context learning models are good few-shot learn-
750 ers? In *ICLR*, 2025.

751 [Xie *et al.*, 2024] Tianbao Xie, Danyang Zhang, Jixuan Chen, et al.
752 OSWorld: Benchmarking multimodal agents for open-ended
753 tasks in real computer environments. In *NeurIPS*, 2024.

754 [Yang *et al.*, 2025] Zeyuan Yang, Delin Chen, Xueyang Yu, et al.
755 VCA: Video curious agent for long video understanding. In
756 *ICCV*, 2025.

757 [Yao *et al.*, 2022] Shunyu Yao, Jeffrey Zhao, Dian Yu, et al. ReAct:
758 Synergizing reasoning and acting in language models. In *ICLR*,
759 2022.

760 [Yu, 2018] Yang Yu. Towards sample efficient reinforcement learn-
761 ing. In *IJCAI*, pages 5739–5743, 2018.

762 [Zhang *et al.*, 2025a] Chaoyun Zhang, Liqun Li, Shilin He, et al.
763 UFO: A UI-focused agent for Windows OS interaction. In
764 *NAAACL*, 2025.

765 [Zhang *et al.*, 2025b] Zeyu Zhang, Quanyu Dai, Xiaohe Bo, et al.
766 A survey on the memory mechanism of large language model-
767 based agents. *TOIS*, 43(6):1–47, 2025.

768 [Zhao *et al.*, 2024] Andrew Zhao, Daniel Huang, Quentin Xu, et al.
769 ExpeL: LLM agents are experiential learners. In *AAAI*, 2024.

770 [Zhou *et al.*, 2024a] Andy Zhou, Kai Yan, Michal Shlapentokh-
771 Rothman, et al. Language agent tree search unifies reasoning,
772 acting, and planning in language models. In *ICML*, 2024.

773 [Zhou *et al.*, 2024b] Gengze Zhou, Yicong Hong, Zun Wang, et al.
774 NavGPT-2: Unleashing navigational reasoning capability for
775 large vision-language models. In *ECCV*, 2024.

776 [Zhou *et al.*, 2024c] Shuyan Zhou, Frank F Xu, Hao Zhu, et al. We-
777 bArena: A realistic web environment for building autonomous
778 agents. In *ICLR*, 2024.