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Abstract

LLM-based agents are increasingly deployed1

across web and GUI automation, embodied deci-2

sion making, and scientific workflows, yet their3

progress is often constrained by limited data and4

interaction. High-quality supervision is costly, and5

real-environment interactions are expensive, risky,6

and quickly invalidated by environment drift. This7

survey studies how to obtain and improve LLM-8

based agents with fewer samples, fewer labels, and9

fewer/ cheaper interactions. We view agentic learn-10

ing as a closed-loop decision process where experi-11

ence arises from both external supervision and on-12

line interactions, and data efficiency requires max-13

imizing information yield per unit cost. We then14

introduce a unified agentic learning framework and15

organize the literature along three complementary16

dimensions: experience augmentation, agent struc-17

tural design, and learning paradigms. This perspec-18

tive connects design choices to where learning sig-19

nals come from, how they are utilized, and how20

adaptation is performed under bounded budgets.21

We summarize representative benchmarks and syn-22

thesize key open challenges, aiming to clarify the23

emerging landscape and support future progress in24

data-efficient agentic learning.25

1 Introduction26

Large language model (LLM)-based agents are rapidly mov-27

ing beyond prompt-only prototypes into closed-loop systems28

that can perceive, reason/plan, and act in dynamic envi-29

ronments. This shift marks a transition from “model-as-a-30

service” to “model-as-an-agent”: success is no longer de-31

termined by one-shot generation quality, but by whether the32

agent can reliably acquire, verify, and refine behaviors while33

acting under dynamic feedback and long-horizon goals. Re-34

cent progress has enabled such agents to operate across a35

wide range of practical settings—from web and GUI automa-36

tion to embodied decision making and scientific or medi-37

cal workflows—where perception, reasoning, and action ex-38

ecution must be coordinated end-to-end [Zhou et al., 2024c;39

Xie et al., 2024; Shridhar et al., 2021; Laurent et al., 2024].40

Figure 1: Conceptual overview of data-efficient agentic learning and
its three complementary strategies.

In these realistic deployments, the dominant bottleneck is 41

increasingly data efficiency rather than model scaling. Down- 42

stream agent tasks are often intrinsically data-scarce: high- 43

quality supervision may be unavailable (e.g., it is unclear 44

how to label every intermediate decision in an interactive tra- 45

jectory), or feasible but prohibitively expensive (e.g., step- 46

level grounding labels, demonstrations, expert feedback, or 47

verification). Meanwhile, online trial-and-error is not “free 48

data”: it consumes environment steps and tool calls, can re- 49

quire human verification, and may introduce safety or relia- 50

bility risks, especially in high-stakes scenarios. Compound- 51

ing the problem, interaction data can become stale under en- 52

vironment or interface drift—a common issue in software au- 53

tomation [Zhou et al., 2024c; Xie et al., 2024]—and similar 54

constraints arise in embodied, scientific, and medical work- 55

flows where privacy, expert time, or experimental verifica- 56

tion costs dominate [Chen et al., 2024; Rein et al., 2024; 57

Laurent et al., 2024]. As a result, practitioners often have 58

to obtain and improve agents with whatever limited signal is 59

available, making “how to learn/obtain a capable LLM-based 60

agent in a data-efficient way” a first-order question. 61

Data efficiency has been a central theme in machine learn- 62

ing, spanning few-shot learning [Wang et al., 2020] and 63

sample-efficient reinforcement learning (RL) [Yu, 2018]. Yet 64

agentic learning fundamentally broadens what “data” means 65

and where efficiency comes from. Beyond labeled examples, 66

agents learn from human annotations, trajectories, intermedi- 67



ate reasoning traces, tool-use patterns, and verification out-68

comes [Yao et al., 2022; Shinn et al., 2023]. Efficiency is69

therefore no longer solely a property of a learning algorithm;70

it emerges from the joint design of (i) experience and how it71

is generated, transformed, or simulated to reduce reliance on72

costly supervision, (ii) agent structure—including specialized73

perceivers and action executors—that reduces wasted inter-74

actions and localizes errors, and (iii) learning paradigms that75

maximize information gain from limited samples, labels, and76

interactions by governing whether and how model parameters77

are updated. Recent theoretical analyses further suggest that78

in-context adaptation can be understood as a form of implicit79

learning, helping explain strong few-shot generalization be-80

haviors in modern LLMs [Wu et al., 2025b].81

Despite the rapidly growing literature, existing reviews of82

LLM-based agents [Wang et al., 2024b; Sang et al., 2025;83

Liu et al., 2025a] typically emphasize broad architectural84

scope or focus on individual components such as multi-agent85

architectures [Wu et al., 2025a; Guo et al., 2024], feedback86

mechanisms [Liu et al., 2025b], memory designs [Zhang87

et al., 2025b], or planning patterns [Torreno et al., 2017].88

They have not explicitly centered bounded supervision and89

interaction budgets as the organizing principle that connects90

techniques across experience acquisition, agent structure, and91

learning dynamics. At the same time, the growing scale and92

diversity of recent work make a unified, agent-centric synthe-93

sis along this dimension both timely and valuable.94

In this survey, we provide a review of data-efficient agen-95

tic learning (Figure 1). Concretely, we make the following96

contributions: We introduce a unified agentic learning frame-97

work and a data-efficiency criterion grounded in limited sam-98

ples, labels, and interactions. We organize the literature into99

a taxonomy along three complementary dimensions: (i) ex-100

perience augmentation, (ii) agent structural design, and (iii)101

learning paradigms, connecting where learning signals origi-102

nate, how they are utilized, and how adaptation is performed103

under bounded budgets. Finally, we summarize representa-104

tive benchmarks across application domains and discuss open105

challenges that shape future progress.106

2 Overview107

We study how to obtain and improve LLM-based agents in108

a data-efficient way. An LLM-based agent can be viewed109

as a closed-loop decision-making system that repeatedly per-110

ceives the environment, reasons and plans with an LLM, exe-111

cutes actions (often via tools), and receives feedback through112

interaction. At time step t, the environment is in state st ∈ S113

and the agent follows the interaction loop shown in Figure 2:114

ot = P (st),

(gt, at) = Lθ(ot,mt−1),

mt = M(mt−1, gt),

a′t = E(at),

st+1 = T (st, a
′
t).

Here P denotes a perceiver that maps the environment state115

to an observation, Lθ is the LLM that produces intermediate116

reasoning outputs gt and selects the next action at, M is a117

Figure 2: Agentic learning loop with core components.

memory module that maintains and updates the internal state 118

mt, and E is an action executor that converts the selected 119

action into an executable form. The interaction yields on- 120

line experience Do = {(st, ot, at, . . .)}Tt=1, while the agent 121

may also leverage external experience De collected outside 122

its own interaction loop (e.g., demonstrations, labels, prefer- 123

ence feedback, or verified outcomes). We denote the available 124

experience by D = Do ∪ De. 125

Then, we define data-efficient agentic learning as follows. 126

Definition 1 (Data-Efficient Agentic Learning). Data- 127

efficient agentic learning studies how to obtain and im- 128

prove LLM-based agents that operate in interactive decision- 129

making settings under limited available experience D. 130

In this survey, we emphasize three coupled aspects. First, 131

agentic interaction refers to a closed-loop process in which 132

an agent repeatedly perceives the environment, reasons and 133

plans with an LLM, executes actions, and incorporates feed- 134

back over time. Second, learning signals arise from both 135

online interactions (trajectories, feedback, verification out- 136

comes) and external supervision (demonstrations, labels, 137

preference feedback, curated data). Third, an approach is 138

data-efficient if its performance gains do not rely on col- 139

lecting large amounts of new supervision or extensive real- 140

environment trial-and-error, but instead improve the informa- 141

tion yield per unit data and interaction. 142

Definition 1 highlights that data-efficiency bottlenecks 143

stem from both costly supervision in De and costly real- 144

environment interaction in Do. Accordingly, this survey or- 145

ganizes existing methods along three complementary design 146

levers that act on different parts of the agentic loop. Expe- 147

rience augmentation focuses on expanding the effective ex- 148

perience D without proportional increases in real interaction 149

(Section 3.1). Agent structural design reorganizes the inter- 150

nal modules and execution protocol (e.g., perceiver, memory, 151

planning, reflection, and action executor) so that interactions 152

become more directed, verifiable, and reusable, reducing re- 153

dundant trial-and-error (Section 3.2). Learning paradigms 154

characterize how agents are adapted from limited data and 155

interaction (Section 3.3). Section 3 then elaborates this tax- 156

onomy and reviews representative methods in each category. 157

3 Taxonomy 158

We now elaborate the taxonomy motivated by Definition 1 159

and Figure 2. The following three subsections review three 160

complementary aspects of data-efficient agentic learning in- 161

troduced in Section 2. For each aspect, we summarize its core 162
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Experience Augmentation

Experience Generation InstructGPT [Ouyang et al., 2022], WebGPT [Nakano et al., 2021]
MATRIX [Tang et al., 2025], AgentGen [Hu et al., 2025]

Experience Transformation
Agent Distillation [Kang et al., 2025], AdaptAgent [Verma et al., 2025],

K-RagRec [Wang et al., 2025], LLaVA-OneVersion [Li et al., 2025a],
PaLM-E [Driess et al., 2023], NavGPT-2 [Zhou et al., 2024b], ADAPT [Lin et al., 2022]

Experience Simulation MetaAgents [Li et al., 2025c], ChatSim [Wei et al., 2024],
RAP [Hao et al., 2023], PDDL [Guan et al., 2023]

Agent Structural Design

Structural Modularity DSPy [Khattab et al., 2023], PEARL [Sun et al., 2024], LLM-Planner [Song et al., 2023],
UFO [Zhang et al., 2025a], AutoAct [Qiao et al., 2024b], MAD [Liang et al., 2024]

Procedural Autonomy
MP5 [Qin et al., 2024], VCA [Yang et al., 2025], Smart-LLM [Kannan et al., 2024],

PS Prompting [Wang et al., 2023], LATS [Zhou et al., 2024a], Tree-Planner [Hu et al., 2024],
ReAct [Yao et al., 2022], Critic [Gao et al., 2024], Self-Refine [Madaan et al., 2023]

Knowledge Reuse Reflexion [Shinn et al., 2023], ExpeL [Zhao et al., 2024], Voyager [Wang et al., 2024a],
JARVIS-1 [Wang et al., 2024c], KG-Agent [Jiang et al., 2025a], WebGLM [Liu et al., 2023]

Learning Paradigm

Optimized In-Context Learning SelfCheck [Miao et al., 2024], WKM [Qiao et al., 2024a], DSPY [Khattab et al., 2023],
AUTOACT [Qiao et al., 2024b], ExpeL [Zhao et al., 2024], REACT [Yao et al., 2022]

Parameter-Efficient Fine-Tuning SWE-Gym [Pan et al., 2024], NavGPT-2 [Zhou et al., 2024b],
NavCoT [Lin et al., 2025], DriVLMe [Huang et al., 2024], FSTTA [Gao et al., 2024]

Budget-Efficient RL WebRL [Qi et al., 2025], CORY [Ma et al., 2024], GAILE [Feng et al., 2024],
MAPoRL2 [Park et al., 2025], POAD [Wen et al., 2024], GUI-R1 [Luo et al., 2025]

Figure 3: Taxonomy of data-efficient agentic learning.

idea, the type of data scarcity it addresses (samples, labels, or163

interactions), and representative works, noting that practical164

systems often combine multiple aspects.165

3.1 Experience Augmentation166

In data-efficient agentic learning, performance is often con-167

strained by the availability and quality of external experience168

rather than model capacity. Real-world trajectories rarely169

cover long-tail states, human supervision is costly, and on-170

line interaction incurs substantial time, safety, and resource171

overhead. Under such constraints, naive trial-and-error yields172

low information gain and poor generalization.173

Experience augmentation addresses this bottleneck by ex-174

panding and strengthening the effective experience pool un-175

der bounded budgets. Rather than collecting more data, its176

goal is to increase the density of task-relevant learning sig-177

nal and reusable behavioral structure per unit of real experi-178

ence. We organize existing approaches into three categories179

(Table 1): experience generation, experience transformation,180

and experience simulation.181

Category Core Idea Data
Type Representative Works

Experience
Generation

Create new
high-quality

data
S, L, I

InstructGPT [Ouyang et al., 2022];
WebGPT [Nakano et al., 2021];
MATRIX [Tang et al., 2025];
AgentGen [Hu et al., 2025]

Experience
Transforma-

tion

Increase
information

density
S, L

Agent Distillation [Kang et al., 2025];
AdaptAgent [Verma et al., 2025];

PaLM-E [Driess et al., 2023];
NavGPT-2 [Zhou et al., 2024b]

Experience
Simulation

Shift
interaction to

cheaper
surrogates

S, I
MetaAgents [Li et al., 2025c];

ChatSim [Wei et al., 2024]; RAP [Hao et
al., 2023]; PDDL [Guan et al., 2023]

Table 1: Experience augmentation strategies for data-efficient agen-
tic learning. S/L/I denote sample/label/interaction.

Experience Generation. This category expands the effec-182

tive experience pool beyond what is directly collected from183

Figure 4: Illustration of experience augmentation strategy for data-
efficient agentic learning. (a) Experience generation synthesizes ad-
ditional training experience to expand coverage under limited inter-
action budgets. (b) Experience transformation enriches and restruc-
tures limited real experience into more reusable training signals. (c)
Experience simulation replaces costly real-world interaction with
simulated or modeled environments.

the real environment, targeting coverage gaps and recur- 184

ring failure modes under limited interaction budgets (Fig- 185

ure 4(a)). Instead of unconstrained data synthesis, experi- 186

ence generation focuses on producing high-quality trajecto- 187

ries that expose diverse error cases while maintaining re- 188

liable supervision. In LLM-based agents, experience gen- 189

eration often starts from human-centric designs, where a 190

small amount of carefully curated demonstrations or prefer- 191

ence feedback is used to concentrate supervision on effec- 192

tive behaviors and reduce exploration waste, as exemplified 193

by InstructGPT [Ouyang et al., 2022], WebGPT [Nakano 194

et al., 2021]. It can further scale through model-centric 195

generation, where agents synthesize additional trajectories 196

at low marginal cost and rely on verification or structured 197

feedback to control error propagation; representative exam- 198

ples include MATRIX [Tang et al., 2025], which generates 199

interaction data via structured multi-agent simulation, and 200

AgentGen [Hu et al., 2025], which expands coverage through 201



environment-conditioned trajectory synthesis without addi-202

tional real-world interaction. These methods improves data203

efficiency by creating additional training signals to expand204

coverage under limited supervision.205

Experience Transformation. This category improves data206

efficiency by enriching and restructuring limited real trajec-207

tories with complementary information, allowing each expe-208

rience item to carry stronger and more reusable learning sig-209

nals without additional interaction cost (Figure 4(b)). This210

is achieved by integrating real experience with external su-211

pervision or structure, followed by systematic reprocessing212

such as filtering, rewriting, relabeling, or compression. Ex-213

isting approaches span multiple mechanisms: knowledge dis-214

tillation transfers reasoning traces or interactive trajectories215

from stronger teachers (e.g., Agent Distillation [Kang et al.,216

2025]); experience retrieval reuses relevant demonstrations217

or structured knowledge as in-context guidance (e.g., Adap-218

tAgent [Verma et al., 2025], K-RagRec [Wang et al., 2025]);219

cross-task transfer enables data-scarce tasks to benefit from220

skills learned in data-rich domains (e.g., PaLM-E [Driess et221

al., 2023], LLaVA-OneVision [Li et al., 2025a]); and modal-222

ity enrichment aligns multimodal signals to make supervi-223

sion more explicit and informative (e.g., ADAPT [Lin et224

al., 2022], NavGPT-2 [Zhou et al., 2024b]). These methods225

transform existing experience to increase information density226

and reuse, thereby improving data efficiency.227

Experience Simulation. This category reduces reliance on228

expensive real-world interaction by shifting exploration and229

failure discovery to cheaper surrogate environments (Fig-230

ure 4(c)). Instead of real trial-and-error, agents explore within231

explicit simulators or learned world models to obtain di-232

verse trajectories and feedback at lower cost. The objec-233

tive is not perfect realism, but sufficient diversity and struc-234

tural fidelity to complement scarce real experience. Systems235

such as MetaAgents [Li et al., 2025c] and ChatSim [Wei236

et al., 2024] demonstrate the utility of controllable simu-237

lated environments for generating targeted and rare interac-238

tion scenarios, while world-model-based approaches such as239

RAP [Hao et al., 2023] and symbolic planning frameworks240

like PDDL [Guan et al., 2023] enable agents to simulate out-241

comes and validate plans without repeated external execution.242

In sum, they improves data efficiency by substituting costly243

real-world interaction with lower-cost interaction sources.244

3.2 Agent Structural Design245

Agent structural design studies how to reorganize an LLM-246

based agent’s internal structure and execution protocol while247

holding data sources fixed, so as to increase the utility of each248

supervision signal or interaction. Rather than acquiring new249

experience, it focuses on how the agent perceives, reasons,250

plans, and executes actions through structured internal mod-251

ules. The goal is to reduce unnecessary trial-and-error and252

environment steps by localizing supervision to the most in-253

formative stages. This often trades additional inference-time254

computation for fewer costly external interactions. From a255

data-efficiency perspective, structural design improves per-256

formance by shrinking the decision space, preventing costly257

error propagation, and enabling reuse of plans, skills, and258

memories. As a result, performance gains increasingly arise 259

from structured internal self-improvement rather than addi- 260

tional external supervision or interaction. We organize exist- 261

ing designs into three categories (Table 2): structural mod- 262

ularity, procedural autonomy, and knowledge reuse, which 263

respectively emphasize modular composition, controlled de- 264

cision procedures, and reuse of prior knowledge to avoid re- 265

dundant exploration.

Category Core Idea Core
Modules Representative Works

Structural
Modularity

Decompose
decision
structure

Planner;
Action

Executor;
Critic

DSPy [Khattab et al., 2023];
PEARL [Sun et al., 2024];

LLM-Planner [Song et al., 2023];
UFO [Zhang et al., 2025a];

AutoAct [Qiao et al., 2024b];
MAD [Liang et al., 2024]

Procedural
Autonomy

Constrain
execution
procedure

Perceiver;
Planner;

Controller;
Verifier

MP5 [Qin et al., 2024]; VCA [Yang
et al., 2025]; Plan-and-Solve [Wang

et al., 2023]; LATS [Zhou et al.,
2024a]; ReAct [Yao et al., 2022];
Self-Refine [Madaan et al., 2023]

Knowledge
Reuse

Reuse prior
experience

Memory;
Skill library;
External KB

Reflexion [Shinn et al., 2023];
ExpeL [Zhao et al., 2024];

Voyager [Wang et al., 2024a];
JARVIS [Wang et al., 2024c];
WebGLM [Liu et al., 2023];

KG-Agent [Jiang et al., 2025a]

Table 2: Agent structural design for data-efficient agentic learning.
266

Structural Modularity. This line of work introduces ex- 267

plicit boundaries and interfaces into an agent’s internal work- 268

flow, transforming an entangled end-to-end reasoning–action 269

process into coordinated components. From a data-efficiency 270

perspective, modularity reduces global trial-and-error by lo- 271

calizing failures, enabling targeted supervision, and promot- 272

ing reuse of intermediate artifacts. Function decoupling, 273

which factorizes monolithic reasoning into planning, execu- 274

tion, and verification modules, allows errors to be corrected 275

locally without restarting the entire decision loop, as exem- 276

plified by DSPy [Khattab et al., 2023] and PEARL [Sun et 277

al., 2024]; hierarchical organization, which separates high- 278

level subgoal planning from low-level execution, compresses 279

long-horizon decision-making via reusable action executors, 280

as in LLM-Planner [Song et al., 2023] and UFO [Zhang et al., 281

2025a]; and role specialization (Figure 5 (a)), where differ- 282

ent agents or components take stable functional roles and ex- 283

change structured feedback, internalizes verification and co- 284

ordination within the system rather than relying on external 285

supervision, as demonstrated by AutoAct [Qiao et al., 2024b] 286

and MAD [Liang et al., 2024] . These design strategies show 287

that modular composition can substantially reduce external 288

interaction cost and improve sample reuse under fixed data 289

budgets. 290

Procedural Autonomy. This line of work constrains agent 291

behavior through explicit, reusable decision procedures, re- 292

placing unconstrained autoregressive generation with con- 293

trolled iterative workflows. By deciding what to observe, how 294

to decompose goals, when to act, and when to verify, pro- 295

cedural designs reduce wasted exploration and prevent cas- 296

cading errors before costly external actions. Active percep- 297

tion, which treats perception as a decision policy over what 298



Figure 5: Illustrative examples of agent structural design for data-efficient agentic learning. (a) Role specialization, a representative instantia-
tion of structural modularity, where the agent is decomposed into coordinated sub-roles with verifier feedback. (b) Structure-aware planning,
a representative instantiation of procedural autonomy, where explicit state–action structure with memory, planning, and reflection guides de-
cisions to reduce trial-and-error. (c) Skill abstraction, a representative instantiation of knowledge reuse, where the agent retrieves, composes,
and verifies reusable skills from a library to avoid repeated low-level interactions.

and when to observe, selectively acquires task-relevant infor-299

mation under limited perception budgets, as in MP5 [Qin et300

al., 2024] and VCA [Yang et al., 2025]; task decomposition301

and structure-aware planning (Figure 5 (b)), which break302

long-horizon goals into verifiable substeps and restrict the303

search space via explicit plans or trees, reduce blind trial-and-304

error by enabling backtracking and reuse of partial solutions,305

as in Plan-and-Solve Prompting [Wang et al., 2023], Smart-306

LLM [Kannan et al., 2024], LATS [Zhou et al., 2024a], and307

Tree-Planner [Hu et al., 2024]; and execution control and308

self-verification, which gate action execution through inter-309

mediate checks and critique, prevent error propagation before310

costly external actions, as in ReAct [Yao et al., 2022], Self-311

Refine [Madaan et al., 2023], and Critic [Gou et al., 2024];312

Collectively, these procedural constraints shift performance313

gains toward structured internal self-improvement rather than314

additional external supervision or interaction.315

Knowledge Reuse. This line of work enables agents to316

avoid re-learning from scratch by converting available pri-317

ors—past interactions, acquired skills, and external knowl-318

edge—into callable and transferable resources for future de-319

cisions. From a data-efficiency perspective, it shifts cost320

from repeated trial-and-error and human correction to reuse321

of compact representations that generalize across instances.322

Memory compression, which distills long and context-heavy323

interaction traces into concise, retrievable summaries or rules,324

helps agents avoid previously encountered failures without325

repeating costly exploration, as in Reflexion [Shinn et al.,326

2023] and ExpeL [Zhao et al., 2024]; skill abstraction (Fig-327

ure 5 (c)), which transforms recurring behavior patterns into328

reusable subroutines or goal-conditioned controllers, enables329

compositional reuse of action structure across tasks, as in330

Voyager [Wang et al., 2024a] and JARVIS-1 [Wang et al.,331

2024c]; and external knowledge bases, where agents re-332

trieve factual or structural priors on demand from the Web333

or knowledge graphs, reduce reliance on parametric memory334

and additional supervision, as in WebGLM [Liu et al., 2023]335

and KG-Agent [Jiang et al., 2025a]. Together, these reuse336

mechanisms substantially reduce redundant exploration and337

task-specific supervision by amortizing learning signal across338

time and tasks.339

3.3 Learning Paradigm 340

When experience augmentation and structural design alone 341

are insufficient, learning becomes unavoidable for improv- 342

ing agent performance. However, naive learning in agentic 343

settings often incurs prohibitive supervision and interaction 344

costs, violating the data-efficiency objective. We therefore re- 345

gard a learning paradigm as data-efficient only when its gains 346

do not rely on large-scale new supervision or extensive real- 347

environment trial-and-error per task, but instead operate un- 348

der strictly bounded data and interaction budgets. 349

Under this criterion, we organize existing approaches 350

into three paradigms (Table 3): optimized in-context learn- 351

ing (ICL), which enables inference-time adaptation without 352

parameter updates; parameter-efficient fine-tuning (PEFT), 353

which achieves persistent adaptation via lightweight parame- 354

ter updates; and budget-efficient reinforcement learning (RL), 355

which improves policies under constrained interaction and 356

credit-assignment budgets. Together, they span a spectrum 357

from transient to persistent adaptation, capturing key trade- 358

offs among learning permanence, data efficiency, and inter- 359

action cost. 360

Paradigm Core Idea Budget
Type Representative Works

Optimized
ICL

Adapt without
parameter
updates

Inference-
only

ReAct [Yao et al., 2022]; SelfCheck [Miao
et al., 2024]; DSPy [Khattab et al., 2023];
ExpeL [Zhao et al., 2024]; WKM [Qiao et
al., 2024a]; AutoAct [Qiao et al., 2024b]

PEFT
Partial

parameter
adaptation

Limited
training

data

SWE-Gym [Pan et al., 2024];
NavGPT-2 [Zhou et al., 2024b];

NavCoT [Lin et al., 2025];
DriVLMe [Huang et al., 2024];

FSTTA [Gao et al., 2024]

Budget-
Efficient

RL

Policy
learning via a

few
interaction

Budgeted
interaction

WebRL [Qi et al., 2025]; CORY [Ma et al.,
2024]; GAILE [Feng et al., 2024];

MAPoRL2 [Park et al., 2025]; POAD [Wen
et al., 2024]; GUI-R1 [Luo et al., 2025]

Table 3: Learning paradigms for data-efficient agentic learning.

Optimized In-Context Learning (ICL). This paradigm 361

enables inference-time adaptation by reusing and restructur- 362

ing contextual information, eliminating the need for param- 363

eter updates (Figure 6(a)). Early agentic prompting frame- 364

works such as ReAct [Yao et al., 2022] show that interleav- 365

ing reasoning, action, and observation within context allows 366



Figure 6: Illustration of learning paradigms for data-efficient agentic learning. (a) Optimized ICL adapts behavior at inference time without
parameter updates. (b) PEFT enables persistent adaptation with limited demonstrations via lightweight updates. (c) Budget-efficient RL
improves policies under constrained interaction budgets by enhancing learning signals rather than scaling rollouts.

agents to incorporate environment feedback without learn-367

ing. Subsequent work improves data efficiency by optimiz-368

ing context quality rather than quantity: SelfCheck [Miao et369

al., 2024] and DSPy [Khattab et al., 2023] introduce verifica-370

tion and compilation mechanisms to refine prompts based on371

feedback signals, while knowledge-based approaches (e.g.,372

ExpeL [Zhao et al., 2024], WKM [Qiao et al., 2024a]) reuse373

distilled trial-and-error experience and inject task knowl-374

edge as in-context guidance to mitigate blind exploration and375

hallucinated actions. AutoAct [Qiao et al., 2024b] further376

demonstrates that agents can bootstrap high-quality contex-377

tual trajectories through self-instruction and structured reflec-378

tion under minimal human supervision. Overall, optimized379

in-context learning enables efficient inference-time adapta-380

tion of LLM-based agents without parameter updates; recent381

theoretical analyses further suggest that such behavior can be382

understood as implicit learning, exhibiting strong few-shot383

generalization [Wu et al., 2025b].384

Parameter-Efficient Fine-Tuning (PEFT). This paradigm385

enables persistent task adaptation under limited supervision386

by updating only a small subset of parameters, reducing data387

demand, optimization cost, and the risk of catastrophic for-388

getting compared with full fine-tuning (Figure 6(b)). In agen-389

tic systems, PEFT allows specialization from a small number390

of demonstrations or interaction traces while preserving the391

generality of large pretrained models. Across embodied navi-392

gation, autonomous driving, and software agents, works such393

as NavGPT-2 [Zhou et al., 2024b], NavCoT [Lin et al., 2025],394

DriVLMe [Huang et al., 2024], and SWE-Gym [Pan et al.,395

2024] demonstrate that adopting lightweight adapters or pro-396

jections can achieve strong performance with orders of mag-397

nitude fewer labeled trajectories. Recent extensions further398

show that PEFT can be applied online or at test time [Gao et399

al., 2024], enabling agents to adapt under strict data budgets400

without large-scale retraining.401

Budget-Efficient Reinforcement Learning (RL). This402

paradigm improves agent policies under strictly limited in-403

teraction budgets, expensive environment access, and sparse404

or delayed feedback, where conventional RL that scales roll-405

outs becomes impractical (Figure 6(c)). Rather than increas-406

ing interactions, recent approaches enhance data efficiency407

by restructuring experience, shaping rewards, and improving408

credit assignment. For example, WebRL [Qi et al., 2025]409

and MAPoRL2 [Park et al., 2025] demonstrate that self-410

evolving curriculum reuse, verifier-based rewards, and col-411

laborative training can yield substantial gains with far fewer412

rollouts. Fine-grained credit assignment methods such as413

POAD [Wen et al., 2024] further accelerate learning by yield- 414

ing finer-grained credit assignment without additional inter- 415

actions. These strategies have proven particularly effective 416

for GUI agents [Luo et al., 2025], highlighting that budget- 417

efficient RL is less about scaling interaction and more about 418

extracting maximal learning signal from minimal experience. 419

4 Applications and Benchmarks 420

We highlight five representative application domains—Web, 421

GUI, Embodied AI, Medical, and Science—that capture the 422

primary real-world settings in which data-efficient agentic 423

learning is most critical. These domains span common agent 424

interaction modalities, from text-based and vision-language 425

interfaces to long-horizon decision making in physical and 426

scientific workflows. Across all five domains, agents face 427

similar structural constraints: effective interaction trajectories 428

are costly to obtain, fine-grained grounding or expert super- 429

vision is expensive, environments and user interfaces evolve 430

over time, and safety, privacy, or experimental considerations 431

restrict large-scale trial-and-error. As a result, agent perfor- 432

mance in these settings depends not only on task competence, 433

but on how efficiently learning signals are acquired, reused, 434

and transferred under limited supervision and interaction. 435

Table 4 lists a small set of widely used benchmarks se- 436

lected to provide empirical grounding for these challenges. 437

Rather than offering an exhaustive benchmark survey, we fo- 438

cus on benchmarks that (i) adopt relatively stable evaluation 439

protocols, (ii) instantiate explicit perception–decision–action 440

loops, and (iii) expose dominant sources of data scarcity, in- 441

cluding interaction cost, labeling or expert supervision cost, 442

environment or interface drift, and regulatory or safety con- 443

straints. These benchmarks therefore serve as representa- 444

tive testbeds for studying how different data-efficient mech- 445

anisms—experience augmentation, agent structural design, 446

and learning paradigms—translate into practical gains across 447

application domains. 448

5 Open Challenges 449

Data-efficient agentic learning departs from classical notions 450

of sample efficiency because agent data is interactive, sequen- 451

tial, and heterogeneous across tasks, environments, and users. 452

Each step can generate not only observations and rewards, 453

but also reasoning traces, tool-use patterns, and verification 454

signals that affect future decisions. When interaction, super- 455

vision, verification, and personalization all carry real cost, 456

several challenges become central to making data-efficient 457

agents practical and reliable. 458



Benchmark Modality Task Link Year

Web (High interaction cost and rapid environment drift.)
WebArena [Zhou et al., 2024c] L Web Navigation link 2023
Mind2Web [Deng et al., 2023] V–L Web Navigation link 2023
WebVoyager [He et al., 2024] V–L Web Navigation link 2024

GUI (High annotation cost and UI drift across versions/devices.)
OSWorld [Xie et al., 2024] V–L Desktop Automation link 2024
AndroidWorld [Rawles et al., 2025] V–L Mobile App

Automation
link 2024

ScreenSpot [Li et al., 2025b] V–L GUI Grounding link 2025

Embodied AI (Costly and safety-constrained real-world interaction.)
Franka-Kitchen [Gupta et al., 2020] 3D Manipulation link 2019
ALFWorld [Shridhar et al., 2021] L Embodied Task

Execution
link 2021

Meta-World [McLean et al., 2025] 3D Multi-task
Manipulation

link 2025

Medical (Privacy-restricted data and costly expert supervision.)
ClinicalBench [Chen et al., 2024] L Clinical Prediction link 2024
MedRAX [Fallahpour et al., 2025] V–L Clinical Diagnosis link 2025
MedAgentBench [Jiang et al., 2025b] L Clinical Decision

Making
link 2025

Science (Expert-labeled data and expensive experiments.)
GPQA [Rein et al., 2024] L Scientific Reasoning link 2024
LAB-Bench [Laurent et al., 2024] V–L Biology Research link 2024
DiscoveryWorld [Jansen et al., 2024] V–L Scientific Discovery link 2024

Table 4: Representative benchmarks for data-efficient agentic learn-
ing across application domains. L denotes language-only (text), V–
L denotes vision–language, and 3D denotes embodied observations
(3D state/environment).

Long-Horizon Learning. Many agentic tasks require long-459

horizon decision making, where errors compound and the460

burden of verification, credit assignment, and exploration461

escalates quickly [Lin et al., 2025]. Although PEFT and462

budget-efficient RL reduce parameter-update cost, long-463

horizon settings often still incur substantial interaction and464

supervision overhead. A key direction is to make horizon a465

first-class factor in agent design and learning: agents should466

reason with checkpoints, reuse intermediate artifacts, and al-467

locate verification strategically, rather than relying on naive468

rollout scaling.469

Generalization and Drift. General-purpose agents must470

transfer across tasks, tools, environments, and deployment471

conditions while relying on limited data and interactions.472

Since exhaustive coverage is infeasible, robust generaliza-473

tion hinges on learning reusable abstractions of reasoning,474

planning, and interaction rather than fitting individual tra-475

jectories [Zhao et al., 2024]. This brings forward practical476

questions about what should be abstracted (e.g., decomposi-477

tion patterns and tool-use strategies), how sparse interactions478

should trigger adaptation, and how to remain stable under dis-479

tribution shift and environment/UI drift.480

Personalization and User-Centric Learning. Many real-481

world agents operate in personalized settings, where behav-482

ior must adapt to individual users, preferences, and con-483

straints [Nie et al., 2025]. Personalization is intrinsically484

data-scarce: each user induces a distinct interaction distribu-485

tion, and feedback is often implicit, noisy, or delayed. Core486

challenges include leveraging population-level structure to re-487

duce per-user data needs, maintaining long-term user models488

under privacy constraints, and ensuring personalization does489

not erode generalization or safety.490

System-Level Efficiency across Deployments. Most 491

agents are still improved in isolation, causing interaction and 492

supervision costs to scale linearly with the number of de- 493

ployment instances [Ma et al., 2024]. A promising direction 494

is to treat data efficiency as a system objective: transform 495

trajectories, skills, and verification outcomes into structured 496

representations that can be selectively shared and reused 497

across instances. Achieving this requires principled selection 498

and aggregation, safeguards against error amplification, and 499

evaluation protocols that measure marginal utility of shared 500

experience rather than isolated task performance. 501

Self-Evolving Agents. A long-term goal is open-ended 502

agents that continually improve through interaction with en- 503

vironments, humans, and data [Yao et al., 2022], blurring the 504

boundary between training-time and test-time learning. In 505

deployment, however, unconstrained self-evolution is unre- 506

alistic because interaction, verification, and computation are 507

budgeted. The challenge is to make self-evolution deliber- 508

ate and economical: agents should decide when to explore, 509

when to verify, and what to retain or reuse so improvement is 510

sustainable and does not regress under drift. 511

Interaction-Centric Evaluation. Most benchmarks em- 512

phasize final task success and implicitly treat interaction as 513

free, which hides inefficiencies in learning and adaptation. 514

More informative evaluation should report not only success 515

rates, but also interaction steps, tool calls, verification fre- 516

quency, supervision cost, and performance gain per unit inter- 517

action [Shinn et al., 2023]. Such protocols would enable prin- 518

cipled comparison of methods that trade computation, verifi- 519

cation, and interaction differently. 520

High-Stakes, Data-Scarce Domains. Interaction data is 521

costly, sparse, or high-risk rather than simply “limited” in 522

many applications. This is evident in embodied decision mak- 523

ing [Qin et al., 2024], scientific discovery [Swanson et al., 524

2025], and medical decision support, where unsafe or exces- 525

sive trial-and-error is unacceptable. These domains call for 526

data-efficient agents that integrate domain priors, rely on ver- 527

ifiable signals, and allocate scarce human supervision where 528

it has the highest leverage. 529

6 Conclusion 530

This survey presented an agent-centric view of data-efficient 531

agentic learning, focusing on how to obtain and improve 532

LLM-based agents when supervision and real-world inter- 533

actions are scarce, expensive, or risky. We framed the 534

design space along three complementary dimensions: ex- 535

perience augmentation, agent structural design, and learn- 536

ing paradigms, which together aim to maximize information 537

yield per unit cost, often trading additional inference-time 538

computation and verification for fewer external interactions 539

and less human supervision. We also summarized represen- 540

tative benchmarks across Web, GUI, embodied, medical, and 541

scientific domains, and discussed open challenges in long- 542

horizon learning under tight budgets, generalization beyond 543

data coverage, user-centric personalization under sparse feed- 544

back, and interaction-centric evaluation. We hope this survey 545

helps clarify the emerging landscape and supports the devel- 546

opment of robust and deployable data-efficient agents. 547

https://webarena.dev/
https://github.com/OSU-NLP-Group/Mind2Web
https://github.com/MinorJerry/WebVoyager?tab=readme-ov-file
https://os-world.github.io/
https://github.com/google-research/android_world
https://gui-agent.github.io/grounding-leaderboard/
https://relay-policy-learning.github.io/
https://alfworld.github.io/
https://github.com/Farama-Foundation/Metaworld
https://clinicalbench.github.io/
https://github.com/bowang-lab/MedRAX
https://github.com/stanfordmlgroup/MedAgentBench
https://github.com/idavidrein/gpqa
https://github.com/Future-House/lab-bench
https://github.com/allenai/discoveryworld
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