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Abstract

LLM-based agents are increasingly deployed
across web and GUI automation, embodied deci-
sion making, and scientific workflows, yet their
progress is often constrained by limited data and
interaction. High-quality supervision is costly, and
real-environment interactions are expensive, risky,
and quickly invalidated by environment drift. This
survey studies how to obtain and improve LLM-
based agents with fewer samples, fewer labels, and
fewer/ cheaper interactions. We view agentic learn-
ing as a closed-loop decision process where experi-
ence arises from both external supervision and on-
line interactions, and data efficiency requires max-
imizing information yield per unit cost. We then
introduce a unified agentic learning framework and
organize the literature along three complementary
dimensions: experience augmentation, agent struc-
tural design, and learning paradigms. This perspec-
tive connects design choices to where learning sig-
nals come from, how they are utilized, and how
adaptation is performed under bounded budgets.
We summarize representative benchmarks and syn-
thesize key open challenges, aiming to clarify the
emerging landscape and support future progress in
data-efficient agentic learning.

1 Introduction

Large language model (LLM)-based agents are rapidly mov-
ing beyond prompt-only prototypes into closed-loop systems
that can perceive, reason/plan, and act in dynamic envi-
ronments. This shift marks a transition from “model-as-a-
service” to “model-as-an-agent”: success is no longer de-
termined by one-shot generation quality, but by whether the
agent can reliably acquire, verify, and refine behaviors while
acting under dynamic feedback and long-horizon goals. Re-
cent progress has enabled such agents to operate across a
wide range of practical settings—from web and GUI automa-
tion to embodied decision making and scientific or medi-
cal workflows—where perception, reasoning, and action ex-
ecution must be coordinated end-to-end [Zhou et al., 2024c;
Xie et al., 2024; Shridhar et al., 2021; Laurent et al., 2024].
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Figure 1: Conceptual overview of data-efficient agentic learning and
its three complementary strategies.

In these realistic deployments, the dominant bottleneck is
increasingly data efficiency rather than model scaling. Down-
stream agent tasks are often intrinsically data-scarce: high-
quality supervision may be unavailable (e.g., it is unclear
how to label every intermediate decision in an interactive tra-
jectory), or feasible but prohibitively expensive (e.g., step-
level grounding labels, demonstrations, expert feedback, or
verification). Meanwhile, online trial-and-error is not “free
data”: it consumes environment steps and tool calls, can re-
quire human verification, and may introduce safety or relia-
bility risks, especially in high-stakes scenarios. Compound-
ing the problem, interaction data can become stale under en-
vironment or interface drift—a common issue in software au-
tomation [Zhou et al., 2024c; Xie et al., 2024]—and similar
constraints arise in embodied, scientific, and medical work-
flows where privacy, expert time, or experimental verifica-
tion costs dominate [Chen et al., 2024; Rein et al., 2024;
Laurent et al., 2024]. As a result, practitioners often have
to obtain and improve agents with whatever limited signal is
available, making “how to learn/obtain a capable LLM-based
agent in a data-efficient way” a first-order question.

Data efficiency has been a central theme in machine learn-
ing, spanning few-shot learning [Wang et al., 2020] and
sample-efficient reinforcement learning (RL) [Yu, 2018]. Yet
agentic learning fundamentally broadens what “data” means
and where efficiency comes from. Beyond labeled examples,
agents learn from human annotations, trajectories, intermedi-
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ate reasoning traces, tool-use patterns, and verification out-
comes [Yao er al., 2022; Shinn er al., 2023]. Efficiency is
therefore no longer solely a property of a learning algorithm;
it emerges from the joint design of (i) experience and how it
is generated, transformed, or simulated to reduce reliance on
costly supervision, (ii) agent structure—including specialized
perceivers and action executors—that reduces wasted inter-
actions and localizes errors, and (iii) learning paradigms that
maximize information gain from limited samples, labels, and
interactions by governing whether and how model parameters
are updated. Recent theoretical analyses further suggest that
in-context adaptation can be understood as a form of implicit
learning, helping explain strong few-shot generalization be-
haviors in modern LLMs [Wu et al., 2025b].

Despite the rapidly growing literature, existing reviews of
LLM-based agents [Wang er al., 2024b; Sang et al., 2025;
Liu et al., 2025a] typically emphasize broad architectural
scope or focus on individual components such as multi-agent
architectures [Wu et al., 2025a; Guo et al., 2024], feedback
mechanisms [Liu et al., 2025b], memory designs [Zhang
et al., 2025b], or planning patterns [Torreno et al., 2017].
They have not explicitly centered bounded supervision and
interaction budgets as the organizing principle that connects
techniques across experience acquisition, agent structure, and
learning dynamics. At the same time, the growing scale and
diversity of recent work make a unified, agent-centric synthe-
sis along this dimension both timely and valuable.

In this survey, we provide a review of data-efficient agen-
tic learning (Figure 1). Concretely, we make the following
contributions: We introduce a unified agentic learning frame-
work and a data-efficiency criterion grounded in limited sam-
ples, labels, and interactions. We organize the literature into
a taxonomy along three complementary dimensions: (i) ex-
perience augmentation, (ii) agent structural design, and (iii)
learning paradigms, connecting where learning signals origi-
nate, how they are utilized, and how adaptation is performed
under bounded budgets. Finally, we summarize representa-
tive benchmarks across application domains and discuss open
challenges that shape future progress.

2 Overview

We study how to obtain and improve LLM-based agents in
a data-efficient way. An LLM-based agent can be viewed
as a closed-loop decision-making system that repeatedly per-
ceives the environment, reasons and plans with an LLM, exe-
cutes actions (often via tools), and receives feedback through
interaction. At time step ¢, the environment is in state s; € S
and the agent follows the interaction loop shown in Figure 2:

Oy = P(St),

(gtaat) = Lt‘)(Otamtfl)»
my = M(mi_1, gt),

a; = E(ay),
St+1 = T(st,ai).

Here P denotes a perceiver that maps the environment state
to an observation, Ly is the LLM that produces intermediate
reasoning outputs g; and selects the next action a;, M is a

Agent

Perceiver P Perception s,
Observation o,

LLM Ly |&— Feedback —-| Environment
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State
Action Plan a, Transition
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Executor E [— Action Execution a;

Figure 2: Agentic learning loop with core components.

memory module that maintains and updates the internal state
my, and F is an action executor that converts the selected
action into an executable form. The interaction yields on-
line experience D, = {(s¢, 04, as,...)}_, while the agent
may also leverage external experience D, collected outside
its own interaction loop (e.g., demonstrations, labels, prefer-
ence feedback, or verified outcomes). We denote the available
experience by D = D, U D..

Then, we define data-efficient agentic learning as follows.

Definition 1 (Data-Efficient Agentic Learning). Data-
efficient agentic learning studies how to obtain and im-
prove LLM-based agents that operate in interactive decision-
making settings under limited available experience D.

In this survey, we emphasize three coupled aspects. First,
agentic interaction refers to a closed-loop process in which
an agent repeatedly perceives the environment, reasons and
plans with an LLM, executes actions, and incorporates feed-
back over time. Second, learning signals arise from both
online interactions (trajectories, feedback, verification out-
comes) and external supervision (demonstrations, labels,
preference feedback, curated data). Third, an approach is
data-efficient if its performance gains do not rely on col-
lecting large amounts of new supervision or extensive real-
environment trial-and-error, but instead improve the informa-
tion yield per unit data and interaction.

Definition 1 highlights that data-efficiency bottlenecks
stem from both costly supervision in D, and costly real-
environment interaction in D,. Accordingly, this survey or-
ganizes existing methods along three complementary design
levers that act on different parts of the agentic loop. Expe-
rience augmentation focuses on expanding the effective ex-
perience D without proportional increases in real interaction
(Section 3.1). Agent structural design reorganizes the inter-
nal modules and execution protocol (e.g., perceiver, memory,
planning, reflection, and action executor) so that interactions
become more directed, verifiable, and reusable, reducing re-
dundant trial-and-error (Section 3.2). Learning paradigms
characterize how agents are adapted from limited data and
interaction (Section 3.3). Section 3 then elaborates this tax-
onomy and reviews representative methods in each category.

3 Taxonomy

We now elaborate the taxonomy motivated by Definition 1
and Figure 2. The following three subsections review three
complementary aspects of data-efficient agentic learning in-
troduced in Section 2. For each aspect, we summarize its core
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Experience Generation

InstructGPT [Ouyang et al., 2022], WebGPT [Nakano et al., 2021]
MATRIX [Tang e al., 2025], AgentGen [Hu et al., 2025]
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Experience Simulation

RAP [Hao et al., 2023], PDDL [Guan et al., 2023]
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DSPy [Khattab er al., 20231, PEARL [Sun et al., 2024], LLM-Planner [Song ef al., 2023],
UFO [Zhang et al., 2025al, AutoAct [Qiao et al., 2024b]l, MAD [Liang er al., 2024]

i MetaAgents [Li et al., 2025c], ChatSim [Wei et al., 2024],

[ Agent Structural Design
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PS Prompting [Wang et al., 20231, LATS [Zhou et al., 2024al, Tree-Planner [Hu et al., 20241,
ReAct [Yao et al., 2022], Critic [Gao et al., 2024], Self-Refine [Madaan et al., 2023]

Knowledge Reuse

Reflexion [Shinn et al., 2023], ExpeL [Zhao et al., 2024], Voyager [Wang et al., 2024al,
JARVIS-1 [Wang et al., 2024c], KG-Agent [Jiang er al., 2025al, WebGLM [Liu er al., 2023]

Optimized In-Context Learning

SelfCheck [Miao et al., 2024], WKM [Qiao et al., 2024al, DSPY [Khattab et al., 20231,

{ Data-Efficient Agentic Learning }

[ Learning Paradigm Parameter-Efficient Fine-Tuning

SWE-Gym [Pan et al., 2024], NavGPT-2 [Zhou et al., 2024b],
NavCoT [Lin et al., 2025], DriVLMe [Huang et al., 2024], FSTTA [Gao er al., 2024]
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WebRL [Qi et al., 20251, CORY [Ma et al., 20241, GAILE [Feng et al., 20241,
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Figure 3: Taxonomy of data-efficient agentic learning.

idea, the type of data scarcity it addresses (samples, labels, or
interactions), and representative works, noting that practical
systems often combine multiple aspects.

3.1 Experience Augmentation

In data-efficient agentic learning, performance is often con-
strained by the availability and quality of external experience
rather than model capacity. Real-world trajectories rarely
cover long-tail states, human supervision is costly, and on-
line interaction incurs substantial time, safety, and resource
overhead. Under such constraints, naive trial-and-error yields
low information gain and poor generalization.

Experience augmentation addresses this bottleneck by ex-
panding and strengthening the effective experience pool un-
der bounded budgets. Rather than collecting more data, its
goal is to increase the density of task-relevant learning sig-
nal and reusable behavioral structure per unit of real experi-
ence. We organize existing approaches into three categories
(Table 1): experience generation, experience transformation,
and experience simulation.

Data .
Categor Core Idea Representative Works
gory ‘ Type p
Create new InstructGPT [Ouyang er al., 2022];
Experience hieh-qualit S LI WebGPT [Nakano et al., 20211;
Generation g dgla y 7 MATRIX [Tang et al., 2025];
AgentGen [Hu et al., 2025]
Experience Increase Agent Distillation [Kang et al., 2025];
Traﬁ sforma- | information | S.L AdaptAgent [Verma et al., 2025];
gion densit ’ PaLM-E [Driess et al., 2023];
sty NavGPT-2 [Zhou et al., 2024b]
Exnerionce imei};g:m © MetaAgents [Li ef al., 2025c];
Sir]r)mlation cheaper S, 1 ChatSim [Wei er al., 2024]; RAP [Hao et
P al., 20231, PDDL [Guan et al., 2023]
surrogates

Table 1: Experience augmentation strategies for data-efficient agen-
tic learning. S/L/I denote sample/label/interaction.

Experience Generation. This category expands the effec-
tive experience pool beyond what is directly collected from
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Figure 4: Illustration of experience augmentation strategy for data-
efficient agentic learning. (a) Experience generation synthesizes ad-
ditional training experience to expand coverage under limited inter-
action budgets. (b) Experience transformation enriches and restruc-
tures limited real experience into more reusable training signals. (c)
Experience simulation replaces costly real-world interaction with
simulated or modeled environments.

the real environment, targeting coverage gaps and recur-
ring failure modes under limited interaction budgets (Fig-
ure 4(a)). Instead of unconstrained data synthesis, experi-
ence generation focuses on producing high-quality trajecto-
ries that expose diverse error cases while maintaining re-
liable supervision. In LLM-based agents, experience gen-
eration often starts from human-centric designs, where a
small amount of carefully curated demonstrations or prefer-
ence feedback is used to concentrate supervision on effec-
tive behaviors and reduce exploration waste, as exemplified
by InstructGPT [Ouyang er al., 2022], WebGPT [Nakano
et al., 2021]. Tt can further scale through model-centric
generation, where agents synthesize additional trajectories
at low marginal cost and rely on verification or structured
feedback to control error propagation; representative exam-
ples include MATRIX [Tang et al., 2025], which generates
interaction data via structured multi-agent simulation, and
AgentGen [Hu er al., 2025], which expands coverage through
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environment-conditioned trajectory synthesis without addi-
tional real-world interaction. These methods improves data
efficiency by creating additional training signals to expand
coverage under limited supervision.

Experience Transformation. This category improves data
efficiency by enriching and restructuring limited real trajec-
tories with complementary information, allowing each expe-
rience item to carry stronger and more reusable learning sig-
nals without additional interaction cost (Figure 4(b)). This
is achieved by integrating real experience with external su-
pervision or structure, followed by systematic reprocessing
such as filtering, rewriting, relabeling, or compression. Ex-
isting approaches span multiple mechanisms: knowledge dis-
tillation transfers reasoning traces or interactive trajectories
from stronger teachers (e.g., Agent Distillation [Kang et al.,
20251); experience retrieval reuses relevant demonstrations
or structured knowledge as in-context guidance (e.g., Adap-
tAgent [Verma ef al., 2025], K-RagRec [Wang et al., 2025]);
cross-task transfer enables data-scarce tasks to benefit from
skills learned in data-rich domains (e.g., PALM-E [Driess et
al., 2023], LLaVA-OneVision [Li et al., 2025al); and modal-
ity enrichment aligns multimodal signals to make supervi-
sion more explicit and informative (e.g., ADAPT [Lin et
al., 2022], NavGPT-2 [Zhou et al., 2024b]). These methods
transform existing experience to increase information density
and reuse, thereby improving data efficiency.

Experience Simulation. This category reduces reliance on
expensive real-world interaction by shifting exploration and
failure discovery to cheaper surrogate environments (Fig-
ure 4(c)). Instead of real trial-and-error, agents explore within
explicit simulators or learned world models to obtain di-
verse trajectories and feedback at lower cost. The objec-
tive is not perfect realism, but sufficient diversity and struc-
tural fidelity to complement scarce real experience. Systems
such as MetaAgents [Li et al.,, 2025¢c] and ChatSim [Wei
et al., 2024] demonstrate the utility of controllable simu-
lated environments for generating targeted and rare interac-
tion scenarios, while world-model-based approaches such as
RAP [Hao er al., 2023] and symbolic planning frameworks
like PDDL [Guan et al., 2023] enable agents to simulate out-
comes and validate plans without repeated external execution.
In sum, they improves data efficiency by substituting costly
real-world interaction with lower-cost interaction sources.

3.2 Agent Structural Design

Agent structural design studies how to reorganize an LLM-
based agent’s internal structure and execution protocol while
holding data sources fixed, so as to increase the utility of each
supervision signal or interaction. Rather than acquiring new
experience, it focuses on how the agent perceives, reasons,
plans, and executes actions through structured internal mod-
ules. The goal is to reduce unnecessary trial-and-error and
environment steps by localizing supervision to the most in-
formative stages. This often trades additional inference-time
computation for fewer costly external interactions. From a
data-efficiency perspective, structural design improves per-
formance by shrinking the decision space, preventing costly
error propagation, and enabling reuse of plans, skills, and

memories. As a result, performance gains increasingly arise
from structured internal self-improvement rather than addi-
tional external supervision or interaction. We organize exist-
ing designs into three categories (Table 2): structural mod-
ularity, procedural autonomy, and knowledge reuse, which
respectively emphasize modular composition, controlled de-
cision procedures, and reuse of prior knowledge to avoid re-
dundant exploration.

Category ‘ Core Idea ‘ M((ig:ﬁes ‘ Representative Works
DSPy [Khattab et al., 2023];
Decompose Planner; PEARL [Sun et al., 2024];
Structural deciqior{ Action LLM-Planner [Song et al., 2023];
Modularity s trué ture Executor; UFO [Zhang et al., 2025al;
Critic AutoAct [Qiao et al., 2024b];
MAD [Liang et al., 2024]
Perceiver: MP5 [Qin e al., 2024]; VCA [Yang
Procedural Conslr?in Planner: * et al., 2025]; Plan-and-Solve [Wang
Autonomy execution Con trollér' et al., 2023]; LATS [Zhou et al.,
procedure Verifier > | 2024al; ReAct [Yao et al., 2022];
Self-Refine [Madaan et al., 2023]
Reflexion [Shinn et al., 2023];
Memory: ExpeL [Zhao et al., 2024];
Knowledge | Reuse prior SKill librar’y' Voyager [Wang et al., 2024al;
Reuse experience External KB’ JARVIS [Wang et al., 2024c];
WebGLM [Liu et al., 2023];
KG-Agent [Jiang et al., 2025al

Table 2: Agent structural design for data-efficient agentic learning.

Structural Modularity. This line of work introduces ex-
plicit boundaries and interfaces into an agent’s internal work-
flow, transforming an entangled end-to-end reasoning—action
process into coordinated components. From a data-efficiency
perspective, modularity reduces global trial-and-error by lo-
calizing failures, enabling targeted supervision, and promot-
ing reuse of intermediate artifacts. Function decoupling,
which factorizes monolithic reasoning into planning, execu-
tion, and verification modules, allows errors to be corrected
locally without restarting the entire decision loop, as exem-
plified by DSPy [Khattab et al., 2023] and PEARL [Sun et
al., 2024]; hierarchical organization, which separates high-
level subgoal planning from low-level execution, compresses
long-horizon decision-making via reusable action executors,
as in LLM-Planner [Song et al., 2023] and UFO [Zhang et al.,
2025al; and role specialization (Figure 5 (a)), where differ-
ent agents or components take stable functional roles and ex-
change structured feedback, internalizes verification and co-
ordination within the system rather than relying on external
supervision, as demonstrated by AutoAct [Qiao er al., 2024b]
and MAD [Liang er al., 2024] . These design strategies show
that modular composition can substantially reduce external
interaction cost and improve sample reuse under fixed data
budgets.

Procedural Autonomy. This line of work constrains agent
behavior through explicit, reusable decision procedures, re-
placing unconstrained autoregressive generation with con-
trolled iterative workflows. By deciding what to observe, how
to decompose goals, when to act, and when to verify, pro-
cedural designs reduce wasted exploration and prevent cas-
cading errors before costly external actions. Active percep-
tion, which treats perception as a decision policy over what
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Figure 5: Illustrative examples of agent structural design for data-efficient agentic learning. (a) Role specialization, a representative instantia-
tion of structural modularity, where the agent is decomposed into coordinated sub-roles with verifier feedback. (b) Structure-aware planning,
a representative instantiation of procedural autonomy, where explicit state—action structure with memory, planning, and reflection guides de-
cisions to reduce trial-and-error. (c) Skill abstraction, a representative instantiation of knowledge reuse, where the agent retrieves, composes,
and verifies reusable skills from a library to avoid repeated low-level interactions.

and when to observe, selectively acquires task-relevant infor-
mation under limited perception budgets, as in MP5 [Qin et
al., 2024] and VCA [Yang er al., 2025]; task decomposition
and structure-aware planning (Figure 5 (b)), which break
long-horizon goals into verifiable substeps and restrict the
search space via explicit plans or trees, reduce blind trial-and-
error by enabling backtracking and reuse of partial solutions,
as in Plan-and-Solve Prompting [Wang et al., 2023], Smart-
LLM [Kannan et al., 2024], LATS [Zhou et al., 2024a], and
Tree-Planner [Hu et al., 2024]; and execution control and
self-verification, which gate action execution through inter-
mediate checks and critique, prevent error propagation before
costly external actions, as in ReAct [Yao er al., 2022], Self-
Refine [Madaan et al., 2023], and Critic [Gou et al., 2024];
Collectively, these procedural constraints shift performance
gains toward structured internal self-improvement rather than
additional external supervision or interaction.

Knowledge Reuse. This line of work enables agents to
avoid re-learning from scratch by converting available pri-
ors—past interactions, acquired skills, and external knowl-
edge—into callable and transferable resources for future de-
cisions. From a data-efficiency perspective, it shifts cost
from repeated trial-and-error and human correction to reuse
of compact representations that generalize across instances.
Memory compression, which distills long and context-heavy
interaction traces into concise, retrievable summaries or rules,
helps agents avoid previously encountered failures without
repeating costly exploration, as in Reflexion [Shinn et al.,
2023] and ExpeL [Zhao et al., 2024]; skill abstraction (Fig-
ure 5 (c)), which transforms recurring behavior patterns into
reusable subroutines or goal-conditioned controllers, enables
compositional reuse of action structure across tasks, as in
Voyager [Wang er al., 2024a] and JARVIS-1 [Wang et al.,
2024c]; and external knowledge bases, where agents re-
trieve factual or structural priors on demand from the Web
or knowledge graphs, reduce reliance on parametric memory
and additional supervision, as in WebGLM [Liu et al., 2023]
and KG-Agent [Jiang et al., 2025a]. Together, these reuse
mechanisms substantially reduce redundant exploration and
task-specific supervision by amortizing learning signal across
time and tasks.

3.3 Learning Paradigm

When experience augmentation and structural design alone
are insufficient, learning becomes unavoidable for improv-
ing agent performance. However, naive learning in agentic
settings often incurs prohibitive supervision and interaction
costs, violating the data-efficiency objective. We therefore re-
gard a learning paradigm as data-efficient only when its gains
do not rely on large-scale new supervision or extensive real-
environment trial-and-error per task, but instead operate un-
der strictly bounded data and interaction budgets.

Under this criterion, we organize existing approaches
into three paradigms (Table 3): optimized in-context learn-
ing (ICL), which enables inference-time adaptation without
parameter updates; parameter-efficient fine-tuning (PEFT),
which achieves persistent adaptation via lightweight parame-
ter updates; and budget-efficient reinforcement learning (RL),
which improves policies under constrained interaction and
credit-assignment budgets. Together, they span a spectrum
from transient to persistent adaptation, capturing key trade-
offs among learning permanence, data efficiency, and inter-
action cost.

Paradigm ‘ Core Idea ‘ B,i,l;l f:t ‘ Representative Works
Adapt without ReAct [Yao et al., 2022]; SelfCheck [Miao
Optimized Inference- | et al., 2024]; DSPy [Khattab et al., 2023];
ICL Parﬁf’et‘_" only | ExpeL [Zhao et al., 2024]; WKM [Qiao er
updates al., 2024al; AutoAct [Qiao et al., 2024b]
SWE-Gym [Pan et al., 2024];
Partial Limited NavGPT-2 [Zhou et al., 2024b];
PEFT parameter training NavCoT [Lin er al., 2025];
adaptation data DriVLMe [Huang et al., 2024];
FSTTA [Gao et al., 2024]
Budget- Policy WebRL [Qi et al., 2025]; CORY [Ma et al.,
Efficient learning via a | Budgeted 2024]; GAILE [Feng et al., 20241,
RL few interaction | MAPoRL2 [Park et al., 2025]; POAD [Wen
interaction et al., 2024]; GUI-R1 [Luo et al., 2025]

Table 3: Learning paradigms for data-efficient agentic learning.

Optimized In-Context Learning (ICL). This paradigm
enables inference-time adaptation by reusing and restructur-
ing contextual information, eliminating the need for param-
eter updates (Figure 6(a)). Early agentic prompting frame-
works such as ReAct [Yao et al., 2022] show that interleav-
ing reasoning, action, and observation within context allows
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Figure 6: Illustration of learning paradigms for data-efficient agentic learning. (a) Optimized ICL adapts behavior at inference time without
parameter updates. (b) PEFT enables persistent adaptation with limited demonstrations via lightweight updates. (c) Budget-efficient RL
improves policies under constrained interaction budgets by enhancing learning signals rather than scaling rollouts.

agents to incorporate environment feedback without learn-
ing. Subsequent work improves data efficiency by optimiz-
ing context quality rather than quantity: SelfCheck [Miao et
al., 2024] and DSPy [Khattab er al., 2023] introduce verifica-
tion and compilation mechanisms to refine prompts based on
feedback signals, while knowledge-based approaches (e.g.,
ExpeL [Zhao et al., 2024], WKM [Qiao et al., 2024al) reuse
distilled trial-and-error experience and inject task knowl-
edge as in-context guidance to mitigate blind exploration and
hallucinated actions. AutoAct [Qiao et al., 2024b] further
demonstrates that agents can bootstrap high-quality contex-
tual trajectories through self-instruction and structured reflec-
tion under minimal human supervision. Overall, optimized
in-context learning enables efficient inference-time adapta-
tion of LLM-based agents without parameter updates; recent
theoretical analyses further suggest that such behavior can be
understood as implicit learning, exhibiting strong few-shot
generalization [Wu er al., 2025b].

Parameter-Efficient Fine-Tuning (PEFT). This paradigm
enables persistent task adaptation under limited supervision
by updating only a small subset of parameters, reducing data
demand, optimization cost, and the risk of catastrophic for-
getting compared with full fine-tuning (Figure 6(b)). In agen-
tic systems, PEFT allows specialization from a small number
of demonstrations or interaction traces while preserving the
generality of large pretrained models. Across embodied navi-
gation, autonomous driving, and software agents, works such
as NavGPT-2 [Zhou et al., 2024b], NavCoT [Lin et al., 20251,
DriVLMe [Huang et al., 2024], and SWE-Gym [Pan er al.,
2024] demonstrate that adopting lightweight adapters or pro-
jections can achieve strong performance with orders of mag-
nitude fewer labeled trajectories. Recent extensions further
show that PEFT can be applied online or at test time [Gao et
al., 2024], enabling agents to adapt under strict data budgets
without large-scale retraining.

Budget-Efficient Reinforcement Learning (RL). This
paradigm improves agent policies under strictly limited in-
teraction budgets, expensive environment access, and sparse
or delayed feedback, where conventional RL that scales roll-
outs becomes impractical (Figure 6(c)). Rather than increas-
ing interactions, recent approaches enhance data efficiency
by restructuring experience, shaping rewards, and improving
credit assignment. For example, WebRL [Qi ef al., 2025]
and MAPoRL?2 [Park et al., 2025] demonstrate that self-
evolving curriculum reuse, verifier-based rewards, and col-
laborative training can yield substantial gains with far fewer
rollouts. Fine-grained credit assignment methods such as

POAD [Wen et al., 2024] further accelerate learning by yield-
ing finer-grained credit assignment without additional inter-
actions. These strategies have proven particularly effective
for GUI agents [Luo er al., 2025], highlighting that budget-
efficient RL is less about scaling interaction and more about
extracting maximal learning signal from minimal experience.

4 Applications and Benchmarks

We highlight five representative application domains—Web,
GUI, Embodied Al, Medical, and Science—that capture the
primary real-world settings in which data-efficient agentic
learning is most critical. These domains span common agent
interaction modalities, from text-based and vision-language
interfaces to long-horizon decision making in physical and
scientific workflows. Across all five domains, agents face
similar structural constraints: effective interaction trajectories
are costly to obtain, fine-grained grounding or expert super-
vision is expensive, environments and user interfaces evolve
over time, and safety, privacy, or experimental considerations
restrict large-scale trial-and-error. As a result, agent perfor-
mance in these settings depends not only on task competence,
but on how efficiently learning signals are acquired, reused,
and transferred under limited supervision and interaction.

Table 4 lists a small set of widely used benchmarks se-
lected to provide empirical grounding for these challenges.
Rather than offering an exhaustive benchmark survey, we fo-
cus on benchmarks that (i) adopt relatively stable evaluation
protocols, (ii) instantiate explicit perception—decision—action
loops, and (iii) expose dominant sources of data scarcity, in-
cluding interaction cost, labeling or expert supervision cost,
environment or interface drift, and regulatory or safety con-
straints. These benchmarks therefore serve as representa-
tive testbeds for studying how different data-efficient mech-
anisms—experience augmentation, agent structural design,
and learning paradigms—translate into practical gains across
application domains.

5 Open Challenges

Data-efficient agentic learning departs from classical notions
of sample efficiency because agent data is interactive, sequen-
tial, and heterogeneous across tasks, environments, and users.
Each step can generate not only observations and rewards,
but also reasoning traces, tool-use patterns, and verification
signals that affect future decisions. When interaction, super-
vision, verification, and personalization all carry real cost,
several challenges become central to making data-efficient
agents practical and reliable.
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Benchmark Modality Task Link Year

Web (High interaction cost and rapid environment drift.)

WebArena [Zhou et al., 2024c] L ‘Web Navigation link 2023

Mind2Web [Deng er al., 2023] V-L  Web Navigation link 2023

WebVoyager [He et al., 2024] V-L  Web Navigation link 2024

GUI (High annotation cost and UI drift across versions/devices.)

OSWorld [Xie et al., 2024] V-L  Desktop Automation  link 2024

AndroidWorld [Rawles et al., 2025] V-L  Mobile App link 2024
Automation

ScreenSpot [Li er al., 2025b] V-L  GUI Grounding link 2025

Embodied Al (Costly and safety-constrained real-world interaction.)

Franka-Kitchen [Gupta et al., 2020] 3D  Manipulation link 2019

ALFWorld [Shridhar et al., 2021] L Embodied Task link 2021
Execution

Meta-World [McLean et al., 2025] 3D Multi-task link 2025
Manipulation

Medical (Privacy-restricted data and costly expert supervision.)

ClinicalBench [Chen et al., 2024] L Clinical Prediction link 2024

MedRAX [Fa]lahpour et al., 2025] V-L  Clinical Diagnosis link 2025

MedAgentBench [Jiang et al., 2025b] L Clinical Decision link 2025
Making

Science (Expert-labeled data and expensive experiments.)

GPQA [Rein et al., 2024] L Scientific Reasoning  link 2024

LAB-Bench [Laurent et al., 2024] V-L  Biology Research link 2024

DiscoveryWorld [Jansen et al., 2024] V-L  Scientific Discovery ~ link 2024

Table 4: Representative benchmarks for data-efficient agentic learn-
ing across application domains. L denotes language-only (text), V—
L denotes vision—language, and 3D denotes embodied observations
(3D state/environment).

Long-Horizon Learning. Many agentic tasks require long-
horizon decision making, where errors compound and the
burden of verification, credit assignment, and exploration
escalates quickly [Lin et al., 2025]. Although PEFT and
budget-efficient RL reduce parameter-update cost, long-
horizon settings often still incur substantial interaction and
supervision overhead. A key direction is to make horizon a
first-class factor in agent design and learning: agents should
reason with checkpoints, reuse intermediate artifacts, and al-
locate verification strategically, rather than relying on naive
rollout scaling.

Generalization and Drift. General-purpose agents must
transfer across tasks, tools, environments, and deployment
conditions while relying on limited data and interactions.
Since exhaustive coverage is infeasible, robust generaliza-
tion hinges on learning reusable abstractions of reasoning,
planning, and interaction rather than fitting individual tra-
jectories [Zhao et al., 2024]. This brings forward practical
questions about what should be abstracted (e.g., decomposi-
tion patterns and tool-use strategies), how sparse interactions
should trigger adaptation, and how to remain stable under dis-
tribution shift and environment/UT drift.

Personalization and User-Centric Learning. Many real-
world agents operate in personalized settings, where behav-
ior must adapt to individual users, preferences, and con-
straints [Nie er al., 2025]. Personalization is intrinsically
data-scarce: each user induces a distinct interaction distribu-
tion, and feedback is often implicit, noisy, or delayed. Core
challenges include leveraging population-level structure to re-
duce per-user data needs, maintaining long-term user models
under privacy constraints, and ensuring personalization does
not erode generalization or safety.

System-Level Efficiency across Deployments. Most
agents are still improved in isolation, causing interaction and
supervision costs to scale linearly with the number of de-
ployment instances [Ma et al., 2024]. A promising direction
is to treat data efficiency as a system objective: transform
trajectories, skills, and verification outcomes into structured
representations that can be selectively shared and reused
across instances. Achieving this requires principled selection
and aggregation, safeguards against error amplification, and
evaluation protocols that measure marginal utility of shared
experience rather than isolated task performance.

Self-Evolving Agents. A long-term goal is open-ended
agents that continually improve through interaction with en-
vironments, humans, and data [Yao et al., 2022], blurring the
boundary between training-time and test-time learning. In
deployment, however, unconstrained self-evolution is unre-
alistic because interaction, verification, and computation are
budgeted. The challenge is to make self-evolution deliber-
ate and economical: agents should decide when to explore,
when to verify, and what to retain or reuse so improvement is
sustainable and does not regress under drift.

Interaction-Centric Evaluation. Most benchmarks em-
phasize final task success and implicitly treat interaction as
free, which hides inefficiencies in learning and adaptation.
More informative evaluation should report not only success
rates, but also interaction steps, tool calls, verification fre-
quency, supervision cost, and performance gain per unit inter-
action [Shinn et al., 2023]. Such protocols would enable prin-
cipled comparison of methods that trade computation, verifi-
cation, and interaction differently.

High-Stakes, Data-Scarce Domains. Interaction data is
costly, sparse, or high-risk rather than simply “limited” in
many applications. This is evident in embodied decision mak-
ing [Qin er al., 2024], scientific discovery [Swanson er al.,
2025], and medical decision support, where unsafe or exces-
sive trial-and-error is unacceptable. These domains call for
data-efficient agents that integrate domain priors, rely on ver-
ifiable signals, and allocate scarce human supervision where
it has the highest leverage.

6 Conclusion

This survey presented an agent-centric view of data-efficient
agentic learning, focusing on how to obtain and improve
LLM-based agents when supervision and real-world inter-
actions are scarce, expensive, or risky. We framed the
design space along three complementary dimensions: ex-
perience augmentation, agent structural design, and learn-
ing paradigms, which together aim to maximize information
yield per unit cost, often trading additional inference-time
computation and verification for fewer external interactions
and less human supervision. We also summarized represen-
tative benchmarks across Web, GUI, embodied, medical, and
scientific domains, and discussed open challenges in long-
horizon learning under tight budgets, generalization beyond
data coverage, user-centric personalization under sparse feed-
back, and interaction-centric evaluation. We hope this survey
helps clarify the emerging landscape and supports the devel-
opment of robust and deployable data-efficient agents.
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